| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|- ( A e. ZZ <-> ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) |
| 2 |
|
pcidlem |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) = A ) |
| 3 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 4 |
3
|
adantr |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. NN ) |
| 5 |
4
|
nncnd |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. CC ) |
| 6 |
|
simprl |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> A e. RR ) |
| 7 |
6
|
recnd |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> A e. CC ) |
| 8 |
|
nnnn0 |
|- ( -u A e. NN -> -u A e. NN0 ) |
| 9 |
8
|
ad2antll |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> -u A e. NN0 ) |
| 10 |
|
expneg2 |
|- ( ( P e. CC /\ A e. CC /\ -u A e. NN0 ) -> ( P ^ A ) = ( 1 / ( P ^ -u A ) ) ) |
| 11 |
5 7 9 10
|
syl3anc |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P ^ A ) = ( 1 / ( P ^ -u A ) ) ) |
| 12 |
11
|
oveq2d |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ A ) ) = ( P pCnt ( 1 / ( P ^ -u A ) ) ) ) |
| 13 |
|
simpl |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. Prime ) |
| 14 |
|
1zzd |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> 1 e. ZZ ) |
| 15 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 16 |
15
|
a1i |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> 1 =/= 0 ) |
| 17 |
4 9
|
nnexpcld |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P ^ -u A ) e. NN ) |
| 18 |
|
pcdiv |
|- ( ( P e. Prime /\ ( 1 e. ZZ /\ 1 =/= 0 ) /\ ( P ^ -u A ) e. NN ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) ) |
| 19 |
13 14 16 17 18
|
syl121anc |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) ) |
| 20 |
|
pc1 |
|- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
| 21 |
20
|
adantr |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt 1 ) = 0 ) |
| 22 |
|
pcidlem |
|- ( ( P e. Prime /\ -u A e. NN0 ) -> ( P pCnt ( P ^ -u A ) ) = -u A ) |
| 23 |
9 22
|
syldan |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ -u A ) ) = -u A ) |
| 24 |
21 23
|
oveq12d |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) = ( 0 - -u A ) ) |
| 25 |
|
df-neg |
|- -u -u A = ( 0 - -u A ) |
| 26 |
7
|
negnegd |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> -u -u A = A ) |
| 27 |
25 26
|
eqtr3id |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( 0 - -u A ) = A ) |
| 28 |
24 27
|
eqtrd |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) = A ) |
| 29 |
19 28
|
eqtrd |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = A ) |
| 30 |
12 29
|
eqtrd |
|- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ A ) ) = A ) |
| 31 |
2 30
|
jaodan |
|- ( ( P e. Prime /\ ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) -> ( P pCnt ( P ^ A ) ) = A ) |
| 32 |
1 31
|
sylan2b |
|- ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt ( P ^ A ) ) = A ) |