Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( P e. Prime /\ A e. NN0 ) -> P e. Prime ) |
2 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
3 |
1 2
|
syl |
|- ( ( P e. Prime /\ A e. NN0 ) -> P e. NN ) |
4 |
|
simpr |
|- ( ( P e. Prime /\ A e. NN0 ) -> A e. NN0 ) |
5 |
3 4
|
nnexpcld |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ A ) e. NN ) |
6 |
1 5
|
pccld |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) e. NN0 ) |
7 |
6
|
nn0red |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) e. RR ) |
8 |
7
|
leidd |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) <_ ( P pCnt ( P ^ A ) ) ) |
9 |
5
|
nnzd |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ A ) e. ZZ ) |
10 |
|
pcdvdsb |
|- ( ( P e. Prime /\ ( P ^ A ) e. ZZ /\ ( P pCnt ( P ^ A ) ) e. NN0 ) -> ( ( P pCnt ( P ^ A ) ) <_ ( P pCnt ( P ^ A ) ) <-> ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) ) ) |
11 |
1 9 6 10
|
syl3anc |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( ( P pCnt ( P ^ A ) ) <_ ( P pCnt ( P ^ A ) ) <-> ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) ) ) |
12 |
8 11
|
mpbid |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) ) |
13 |
3 6
|
nnexpcld |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) e. NN ) |
14 |
13
|
nnzd |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) e. ZZ ) |
15 |
|
dvdsle |
|- ( ( ( P ^ ( P pCnt ( P ^ A ) ) ) e. ZZ /\ ( P ^ A ) e. NN ) -> ( ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) <_ ( P ^ A ) ) ) |
16 |
14 5 15
|
syl2anc |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( ( P ^ ( P pCnt ( P ^ A ) ) ) || ( P ^ A ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) <_ ( P ^ A ) ) ) |
17 |
12 16
|
mpd |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ ( P pCnt ( P ^ A ) ) ) <_ ( P ^ A ) ) |
18 |
3
|
nnred |
|- ( ( P e. Prime /\ A e. NN0 ) -> P e. RR ) |
19 |
6
|
nn0zd |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) e. ZZ ) |
20 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
21 |
20
|
adantl |
|- ( ( P e. Prime /\ A e. NN0 ) -> A e. ZZ ) |
22 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
23 |
|
eluz2gt1 |
|- ( P e. ( ZZ>= ` 2 ) -> 1 < P ) |
24 |
1 22 23
|
3syl |
|- ( ( P e. Prime /\ A e. NN0 ) -> 1 < P ) |
25 |
18 19 21 24
|
leexp2d |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( ( P pCnt ( P ^ A ) ) <_ A <-> ( P ^ ( P pCnt ( P ^ A ) ) ) <_ ( P ^ A ) ) ) |
26 |
17 25
|
mpbird |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) <_ A ) |
27 |
|
iddvds |
|- ( ( P ^ A ) e. ZZ -> ( P ^ A ) || ( P ^ A ) ) |
28 |
9 27
|
syl |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ A ) || ( P ^ A ) ) |
29 |
|
pcdvdsb |
|- ( ( P e. Prime /\ ( P ^ A ) e. ZZ /\ A e. NN0 ) -> ( A <_ ( P pCnt ( P ^ A ) ) <-> ( P ^ A ) || ( P ^ A ) ) ) |
30 |
1 9 4 29
|
syl3anc |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( A <_ ( P pCnt ( P ^ A ) ) <-> ( P ^ A ) || ( P ^ A ) ) ) |
31 |
28 30
|
mpbird |
|- ( ( P e. Prime /\ A e. NN0 ) -> A <_ ( P pCnt ( P ^ A ) ) ) |
32 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
33 |
32
|
adantl |
|- ( ( P e. Prime /\ A e. NN0 ) -> A e. RR ) |
34 |
7 33
|
letri3d |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( ( P pCnt ( P ^ A ) ) = A <-> ( ( P pCnt ( P ^ A ) ) <_ A /\ A <_ ( P pCnt ( P ^ A ) ) ) ) ) |
35 |
26 31 34
|
mpbir2and |
|- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) = A ) |