Step |
Hyp |
Ref |
Expression |
1 |
|
pcl0.c |
|- U = ( PCl ` K ) |
2 |
|
0ss |
|- (/) C_ ( Atoms ` K ) |
3 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
4 |
|
eqid |
|- ( _|_P ` K ) = ( _|_P ` K ) |
5 |
3 4 1
|
pclss2polN |
|- ( ( K e. HL /\ (/) C_ ( Atoms ` K ) ) -> ( U ` (/) ) C_ ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` (/) ) ) ) |
6 |
2 5
|
mpan2 |
|- ( K e. HL -> ( U ` (/) ) C_ ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` (/) ) ) ) |
7 |
4
|
2pol0N |
|- ( K e. HL -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` (/) ) ) = (/) ) |
8 |
6 7
|
sseqtrd |
|- ( K e. HL -> ( U ` (/) ) C_ (/) ) |
9 |
|
ss0 |
|- ( ( U ` (/) ) C_ (/) -> ( U ` (/) ) = (/) ) |
10 |
8 9
|
syl |
|- ( K e. HL -> ( U ` (/) ) = (/) ) |