Metamath Proof Explorer


Theorem pclbtwnN

Description: A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclid.s
|- S = ( PSubSp ` K )
pclid.c
|- U = ( PCl ` K )
Assertion pclbtwnN
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X = ( U ` Y ) )

Proof

Step Hyp Ref Expression
1 pclid.s
 |-  S = ( PSubSp ` K )
2 pclid.c
 |-  U = ( PCl ` K )
3 simprr
 |-  ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X C_ ( U ` Y ) )
4 simpll
 |-  ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> K e. V )
5 simprl
 |-  ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> Y C_ X )
6 eqid
 |-  ( Atoms ` K ) = ( Atoms ` K )
7 6 1 psubssat
 |-  ( ( K e. V /\ X e. S ) -> X C_ ( Atoms ` K ) )
8 7 adantr
 |-  ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X C_ ( Atoms ` K ) )
9 6 2 pclssN
 |-  ( ( K e. V /\ Y C_ X /\ X C_ ( Atoms ` K ) ) -> ( U ` Y ) C_ ( U ` X ) )
10 4 5 8 9 syl3anc
 |-  ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` Y ) C_ ( U ` X ) )
11 1 2 pclidN
 |-  ( ( K e. V /\ X e. S ) -> ( U ` X ) = X )
12 11 adantr
 |-  ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` X ) = X )
13 10 12 sseqtrd
 |-  ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` Y ) C_ X )
14 3 13 eqssd
 |-  ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X = ( U ` Y ) )