| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pclid.s |
|- S = ( PSubSp ` K ) |
| 2 |
|
pclid.c |
|- U = ( PCl ` K ) |
| 3 |
|
simprr |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X C_ ( U ` Y ) ) |
| 4 |
|
simpll |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> K e. V ) |
| 5 |
|
simprl |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> Y C_ X ) |
| 6 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 7 |
6 1
|
psubssat |
|- ( ( K e. V /\ X e. S ) -> X C_ ( Atoms ` K ) ) |
| 8 |
7
|
adantr |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X C_ ( Atoms ` K ) ) |
| 9 |
6 2
|
pclssN |
|- ( ( K e. V /\ Y C_ X /\ X C_ ( Atoms ` K ) ) -> ( U ` Y ) C_ ( U ` X ) ) |
| 10 |
4 5 8 9
|
syl3anc |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` Y ) C_ ( U ` X ) ) |
| 11 |
1 2
|
pclidN |
|- ( ( K e. V /\ X e. S ) -> ( U ` X ) = X ) |
| 12 |
11
|
adantr |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` X ) = X ) |
| 13 |
10 12
|
sseqtrd |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` Y ) C_ X ) |
| 14 |
3 13
|
eqssd |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X = ( U ` Y ) ) |