Step |
Hyp |
Ref |
Expression |
1 |
|
pclid.s |
|- S = ( PSubSp ` K ) |
2 |
|
pclid.c |
|- U = ( PCl ` K ) |
3 |
|
simprr |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X C_ ( U ` Y ) ) |
4 |
|
simpll |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> K e. V ) |
5 |
|
simprl |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> Y C_ X ) |
6 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
7 |
6 1
|
psubssat |
|- ( ( K e. V /\ X e. S ) -> X C_ ( Atoms ` K ) ) |
8 |
7
|
adantr |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X C_ ( Atoms ` K ) ) |
9 |
6 2
|
pclssN |
|- ( ( K e. V /\ Y C_ X /\ X C_ ( Atoms ` K ) ) -> ( U ` Y ) C_ ( U ` X ) ) |
10 |
4 5 8 9
|
syl3anc |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` Y ) C_ ( U ` X ) ) |
11 |
1 2
|
pclidN |
|- ( ( K e. V /\ X e. S ) -> ( U ` X ) = X ) |
12 |
11
|
adantr |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` X ) = X ) |
13 |
10 12
|
sseqtrd |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> ( U ` Y ) C_ X ) |
14 |
3 13
|
eqssd |
|- ( ( ( K e. V /\ X e. S ) /\ ( Y C_ X /\ X C_ ( U ` Y ) ) ) -> X = ( U ` Y ) ) |