Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993) (Proof shortened by Wolf Lammen, 25-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pclem6 | |- ( ( ph <-> ( ps /\ -. ph ) ) -> -. ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar | |- ( ps -> ( -. ph <-> ( ps /\ -. ph ) ) ) |
|
| 2 | nbbn | |- ( ( -. ph <-> ( ps /\ -. ph ) ) <-> -. ( ph <-> ( ps /\ -. ph ) ) ) |
|
| 3 | 1 2 | sylib | |- ( ps -> -. ( ph <-> ( ps /\ -. ph ) ) ) |
| 4 | 3 | con2i | |- ( ( ph <-> ( ps /\ -. ph ) ) -> -. ps ) |