| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pclid.s |
|- S = ( PSubSp ` K ) |
| 2 |
|
pclid.c |
|- U = ( PCl ` K ) |
| 3 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 4 |
3 1
|
psubssat |
|- ( ( K e. V /\ X e. S ) -> X C_ ( Atoms ` K ) ) |
| 5 |
3 1 2
|
pclvalN |
|- ( ( K e. V /\ X C_ ( Atoms ` K ) ) -> ( U ` X ) = |^| { y e. S | X C_ y } ) |
| 6 |
4 5
|
syldan |
|- ( ( K e. V /\ X e. S ) -> ( U ` X ) = |^| { y e. S | X C_ y } ) |
| 7 |
|
intmin |
|- ( X e. S -> |^| { y e. S | X C_ y } = X ) |
| 8 |
7
|
adantl |
|- ( ( K e. V /\ X e. S ) -> |^| { y e. S | X C_ y } = X ) |
| 9 |
6 8
|
eqtrd |
|- ( ( K e. V /\ X e. S ) -> ( U ` X ) = X ) |