Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( p e. ( ( 1 ... A ) i^i Prime ) <-> ( p e. ( 1 ... A ) /\ p e. Prime ) ) |
2 |
1
|
baib |
|- ( p e. ( 1 ... A ) -> ( p e. ( ( 1 ... A ) i^i Prime ) <-> p e. Prime ) ) |
3 |
2
|
ifbid |
|- ( p e. ( 1 ... A ) -> if ( p e. ( ( 1 ... A ) i^i Prime ) , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) = if ( p e. Prime , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) ) |
4 |
|
fvif |
|- ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) = if ( p e. Prime , ( log ` ( p ^ ( p pCnt A ) ) ) , ( log ` 1 ) ) |
5 |
|
log1 |
|- ( log ` 1 ) = 0 |
6 |
|
ifeq2 |
|- ( ( log ` 1 ) = 0 -> if ( p e. Prime , ( log ` ( p ^ ( p pCnt A ) ) ) , ( log ` 1 ) ) = if ( p e. Prime , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) ) |
7 |
5 6
|
ax-mp |
|- if ( p e. Prime , ( log ` ( p ^ ( p pCnt A ) ) ) , ( log ` 1 ) ) = if ( p e. Prime , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) |
8 |
4 7
|
eqtri |
|- ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) = if ( p e. Prime , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) |
9 |
3 8
|
eqtr4di |
|- ( p e. ( 1 ... A ) -> if ( p e. ( ( 1 ... A ) i^i Prime ) , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) = ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) ) |
10 |
9
|
sumeq2i |
|- sum_ p e. ( 1 ... A ) if ( p e. ( ( 1 ... A ) i^i Prime ) , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) = sum_ p e. ( 1 ... A ) ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) |
11 |
|
inss1 |
|- ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) |
12 |
|
simpr |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. ( ( 1 ... A ) i^i Prime ) ) |
13 |
12
|
elin1d |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. ( 1 ... A ) ) |
14 |
|
elfznn |
|- ( p e. ( 1 ... A ) -> p e. NN ) |
15 |
13 14
|
syl |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. NN ) |
16 |
12
|
elin2d |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. Prime ) |
17 |
|
simpl |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> A e. NN ) |
18 |
16 17
|
pccld |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( p pCnt A ) e. NN0 ) |
19 |
15 18
|
nnexpcld |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( p ^ ( p pCnt A ) ) e. NN ) |
20 |
19
|
nnrpd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( p ^ ( p pCnt A ) ) e. RR+ ) |
21 |
20
|
relogcld |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` ( p ^ ( p pCnt A ) ) ) e. RR ) |
22 |
21
|
recnd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` ( p ^ ( p pCnt A ) ) ) e. CC ) |
23 |
22
|
ralrimiva |
|- ( A e. NN -> A. p e. ( ( 1 ... A ) i^i Prime ) ( log ` ( p ^ ( p pCnt A ) ) ) e. CC ) |
24 |
|
fzfi |
|- ( 1 ... A ) e. Fin |
25 |
24
|
olci |
|- ( ( 1 ... A ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... A ) e. Fin ) |
26 |
|
sumss2 |
|- ( ( ( ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) /\ A. p e. ( ( 1 ... A ) i^i Prime ) ( log ` ( p ^ ( p pCnt A ) ) ) e. CC ) /\ ( ( 1 ... A ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... A ) e. Fin ) ) -> sum_ p e. ( ( 1 ... A ) i^i Prime ) ( log ` ( p ^ ( p pCnt A ) ) ) = sum_ p e. ( 1 ... A ) if ( p e. ( ( 1 ... A ) i^i Prime ) , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) ) |
27 |
25 26
|
mpan2 |
|- ( ( ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) /\ A. p e. ( ( 1 ... A ) i^i Prime ) ( log ` ( p ^ ( p pCnt A ) ) ) e. CC ) -> sum_ p e. ( ( 1 ... A ) i^i Prime ) ( log ` ( p ^ ( p pCnt A ) ) ) = sum_ p e. ( 1 ... A ) if ( p e. ( ( 1 ... A ) i^i Prime ) , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) ) |
28 |
11 23 27
|
sylancr |
|- ( A e. NN -> sum_ p e. ( ( 1 ... A ) i^i Prime ) ( log ` ( p ^ ( p pCnt A ) ) ) = sum_ p e. ( 1 ... A ) if ( p e. ( ( 1 ... A ) i^i Prime ) , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) ) |
29 |
15
|
nnrpd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> p e. RR+ ) |
30 |
18
|
nn0zd |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( p pCnt A ) e. ZZ ) |
31 |
|
relogexp |
|- ( ( p e. RR+ /\ ( p pCnt A ) e. ZZ ) -> ( log ` ( p ^ ( p pCnt A ) ) ) = ( ( p pCnt A ) x. ( log ` p ) ) ) |
32 |
29 30 31
|
syl2anc |
|- ( ( A e. NN /\ p e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` ( p ^ ( p pCnt A ) ) ) = ( ( p pCnt A ) x. ( log ` p ) ) ) |
33 |
32
|
sumeq2dv |
|- ( A e. NN -> sum_ p e. ( ( 1 ... A ) i^i Prime ) ( log ` ( p ^ ( p pCnt A ) ) ) = sum_ p e. ( ( 1 ... A ) i^i Prime ) ( ( p pCnt A ) x. ( log ` p ) ) ) |
34 |
28 33
|
eqtr3d |
|- ( A e. NN -> sum_ p e. ( 1 ... A ) if ( p e. ( ( 1 ... A ) i^i Prime ) , ( log ` ( p ^ ( p pCnt A ) ) ) , 0 ) = sum_ p e. ( ( 1 ... A ) i^i Prime ) ( ( p pCnt A ) x. ( log ` p ) ) ) |
35 |
14
|
adantl |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> p e. NN ) |
36 |
|
eleq1w |
|- ( n = p -> ( n e. Prime <-> p e. Prime ) ) |
37 |
|
id |
|- ( n = p -> n = p ) |
38 |
|
oveq1 |
|- ( n = p -> ( n pCnt A ) = ( p pCnt A ) ) |
39 |
37 38
|
oveq12d |
|- ( n = p -> ( n ^ ( n pCnt A ) ) = ( p ^ ( p pCnt A ) ) ) |
40 |
36 39
|
ifbieq1d |
|- ( n = p -> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) = if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) |
41 |
40
|
fveq2d |
|- ( n = p -> ( log ` if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) = ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) ) |
42 |
|
eqid |
|- ( n e. NN |-> ( log ` if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) = ( n e. NN |-> ( log ` if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) |
43 |
|
fvex |
|- ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) e. _V |
44 |
41 42 43
|
fvmpt |
|- ( p e. NN -> ( ( n e. NN |-> ( log ` if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) ` p ) = ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) ) |
45 |
35 44
|
syl |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> ( ( n e. NN |-> ( log ` if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) ` p ) = ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) ) |
46 |
|
elnnuz |
|- ( A e. NN <-> A e. ( ZZ>= ` 1 ) ) |
47 |
46
|
biimpi |
|- ( A e. NN -> A e. ( ZZ>= ` 1 ) ) |
48 |
35
|
adantr |
|- ( ( ( A e. NN /\ p e. ( 1 ... A ) ) /\ p e. Prime ) -> p e. NN ) |
49 |
|
simpr |
|- ( ( ( A e. NN /\ p e. ( 1 ... A ) ) /\ p e. Prime ) -> p e. Prime ) |
50 |
|
simpll |
|- ( ( ( A e. NN /\ p e. ( 1 ... A ) ) /\ p e. Prime ) -> A e. NN ) |
51 |
49 50
|
pccld |
|- ( ( ( A e. NN /\ p e. ( 1 ... A ) ) /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
52 |
48 51
|
nnexpcld |
|- ( ( ( A e. NN /\ p e. ( 1 ... A ) ) /\ p e. Prime ) -> ( p ^ ( p pCnt A ) ) e. NN ) |
53 |
|
1nn |
|- 1 e. NN |
54 |
53
|
a1i |
|- ( ( ( A e. NN /\ p e. ( 1 ... A ) ) /\ -. p e. Prime ) -> 1 e. NN ) |
55 |
52 54
|
ifclda |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) e. NN ) |
56 |
55
|
nnrpd |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) e. RR+ ) |
57 |
56
|
relogcld |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) e. RR ) |
58 |
57
|
recnd |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) e. CC ) |
59 |
45 47 58
|
fsumser |
|- ( A e. NN -> sum_ p e. ( 1 ... A ) ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) = ( seq 1 ( + , ( n e. NN |-> ( log ` if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) ) ` A ) ) |
60 |
|
rpmulcl |
|- ( ( p e. RR+ /\ m e. RR+ ) -> ( p x. m ) e. RR+ ) |
61 |
60
|
adantl |
|- ( ( A e. NN /\ ( p e. RR+ /\ m e. RR+ ) ) -> ( p x. m ) e. RR+ ) |
62 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) |
63 |
|
ovex |
|- ( p ^ ( p pCnt A ) ) e. _V |
64 |
|
1ex |
|- 1 e. _V |
65 |
63 64
|
ifex |
|- if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) e. _V |
66 |
40 62 65
|
fvmpt |
|- ( p e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ` p ) = if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) |
67 |
35 66
|
syl |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ` p ) = if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) |
68 |
67 56
|
eqeltrd |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ` p ) e. RR+ ) |
69 |
|
relogmul |
|- ( ( p e. RR+ /\ m e. RR+ ) -> ( log ` ( p x. m ) ) = ( ( log ` p ) + ( log ` m ) ) ) |
70 |
69
|
adantl |
|- ( ( A e. NN /\ ( p e. RR+ /\ m e. RR+ ) ) -> ( log ` ( p x. m ) ) = ( ( log ` p ) + ( log ` m ) ) ) |
71 |
67
|
fveq2d |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> ( log ` ( ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ` p ) ) = ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) ) |
72 |
71 45
|
eqtr4d |
|- ( ( A e. NN /\ p e. ( 1 ... A ) ) -> ( log ` ( ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ` p ) ) = ( ( n e. NN |-> ( log ` if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) ` p ) ) |
73 |
61 68 47 70 72
|
seqhomo |
|- ( A e. NN -> ( log ` ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) ` A ) ) = ( seq 1 ( + , ( n e. NN |-> ( log ` if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) ) ` A ) ) |
74 |
62
|
pcprod |
|- ( A e. NN -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) ` A ) = A ) |
75 |
74
|
fveq2d |
|- ( A e. NN -> ( log ` ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt A ) ) , 1 ) ) ) ` A ) ) = ( log ` A ) ) |
76 |
59 73 75
|
3eqtr2d |
|- ( A e. NN -> sum_ p e. ( 1 ... A ) ( log ` if ( p e. Prime , ( p ^ ( p pCnt A ) ) , 1 ) ) = ( log ` A ) ) |
77 |
10 34 76
|
3eqtr3a |
|- ( A e. NN -> sum_ p e. ( ( 1 ... A ) i^i Prime ) ( ( p pCnt A ) x. ( log ` p ) ) = ( log ` A ) ) |