| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pclss.a |
|- A = ( Atoms ` K ) |
| 2 |
|
pclss.c |
|- U = ( PCl ` K ) |
| 3 |
|
sstr2 |
|- ( X C_ Y -> ( Y C_ y -> X C_ y ) ) |
| 4 |
3
|
3ad2ant2 |
|- ( ( K e. V /\ X C_ Y /\ Y C_ A ) -> ( Y C_ y -> X C_ y ) ) |
| 5 |
4
|
adantr |
|- ( ( ( K e. V /\ X C_ Y /\ Y C_ A ) /\ y e. ( PSubSp ` K ) ) -> ( Y C_ y -> X C_ y ) ) |
| 6 |
5
|
ss2rabdv |
|- ( ( K e. V /\ X C_ Y /\ Y C_ A ) -> { y e. ( PSubSp ` K ) | Y C_ y } C_ { y e. ( PSubSp ` K ) | X C_ y } ) |
| 7 |
|
intss |
|- ( { y e. ( PSubSp ` K ) | Y C_ y } C_ { y e. ( PSubSp ` K ) | X C_ y } -> |^| { y e. ( PSubSp ` K ) | X C_ y } C_ |^| { y e. ( PSubSp ` K ) | Y C_ y } ) |
| 8 |
6 7
|
syl |
|- ( ( K e. V /\ X C_ Y /\ Y C_ A ) -> |^| { y e. ( PSubSp ` K ) | X C_ y } C_ |^| { y e. ( PSubSp ` K ) | Y C_ y } ) |
| 9 |
|
simp1 |
|- ( ( K e. V /\ X C_ Y /\ Y C_ A ) -> K e. V ) |
| 10 |
|
sstr |
|- ( ( X C_ Y /\ Y C_ A ) -> X C_ A ) |
| 11 |
10
|
3adant1 |
|- ( ( K e. V /\ X C_ Y /\ Y C_ A ) -> X C_ A ) |
| 12 |
|
eqid |
|- ( PSubSp ` K ) = ( PSubSp ` K ) |
| 13 |
1 12 2
|
pclvalN |
|- ( ( K e. V /\ X C_ A ) -> ( U ` X ) = |^| { y e. ( PSubSp ` K ) | X C_ y } ) |
| 14 |
9 11 13
|
syl2anc |
|- ( ( K e. V /\ X C_ Y /\ Y C_ A ) -> ( U ` X ) = |^| { y e. ( PSubSp ` K ) | X C_ y } ) |
| 15 |
1 12 2
|
pclvalN |
|- ( ( K e. V /\ Y C_ A ) -> ( U ` Y ) = |^| { y e. ( PSubSp ` K ) | Y C_ y } ) |
| 16 |
15
|
3adant2 |
|- ( ( K e. V /\ X C_ Y /\ Y C_ A ) -> ( U ` Y ) = |^| { y e. ( PSubSp ` K ) | Y C_ y } ) |
| 17 |
8 14 16
|
3sstr4d |
|- ( ( K e. V /\ X C_ Y /\ Y C_ A ) -> ( U ` X ) C_ ( U ` Y ) ) |