Step |
Hyp |
Ref |
Expression |
1 |
|
pclfval.a |
|- A = ( Atoms ` K ) |
2 |
|
pclfval.s |
|- S = ( PSubSp ` K ) |
3 |
|
pclfval.c |
|- U = ( PCl ` K ) |
4 |
1
|
fvexi |
|- A e. _V |
5 |
4
|
elpw2 |
|- ( X e. ~P A <-> X C_ A ) |
6 |
1 2 3
|
pclfvalN |
|- ( K e. V -> U = ( x e. ~P A |-> |^| { y e. S | x C_ y } ) ) |
7 |
6
|
fveq1d |
|- ( K e. V -> ( U ` X ) = ( ( x e. ~P A |-> |^| { y e. S | x C_ y } ) ` X ) ) |
8 |
7
|
adantr |
|- ( ( K e. V /\ X e. ~P A ) -> ( U ` X ) = ( ( x e. ~P A |-> |^| { y e. S | x C_ y } ) ` X ) ) |
9 |
|
eqid |
|- ( x e. ~P A |-> |^| { y e. S | x C_ y } ) = ( x e. ~P A |-> |^| { y e. S | x C_ y } ) |
10 |
|
sseq1 |
|- ( x = X -> ( x C_ y <-> X C_ y ) ) |
11 |
10
|
rabbidv |
|- ( x = X -> { y e. S | x C_ y } = { y e. S | X C_ y } ) |
12 |
11
|
inteqd |
|- ( x = X -> |^| { y e. S | x C_ y } = |^| { y e. S | X C_ y } ) |
13 |
|
simpr |
|- ( ( K e. V /\ X e. ~P A ) -> X e. ~P A ) |
14 |
|
elpwi |
|- ( X e. ~P A -> X C_ A ) |
15 |
14
|
adantl |
|- ( ( K e. V /\ X e. ~P A ) -> X C_ A ) |
16 |
1 2
|
atpsubN |
|- ( K e. V -> A e. S ) |
17 |
16
|
adantr |
|- ( ( K e. V /\ X e. ~P A ) -> A e. S ) |
18 |
|
sseq2 |
|- ( y = A -> ( X C_ y <-> X C_ A ) ) |
19 |
18
|
elrab3 |
|- ( A e. S -> ( A e. { y e. S | X C_ y } <-> X C_ A ) ) |
20 |
17 19
|
syl |
|- ( ( K e. V /\ X e. ~P A ) -> ( A e. { y e. S | X C_ y } <-> X C_ A ) ) |
21 |
15 20
|
mpbird |
|- ( ( K e. V /\ X e. ~P A ) -> A e. { y e. S | X C_ y } ) |
22 |
21
|
ne0d |
|- ( ( K e. V /\ X e. ~P A ) -> { y e. S | X C_ y } =/= (/) ) |
23 |
|
intex |
|- ( { y e. S | X C_ y } =/= (/) <-> |^| { y e. S | X C_ y } e. _V ) |
24 |
22 23
|
sylib |
|- ( ( K e. V /\ X e. ~P A ) -> |^| { y e. S | X C_ y } e. _V ) |
25 |
9 12 13 24
|
fvmptd3 |
|- ( ( K e. V /\ X e. ~P A ) -> ( ( x e. ~P A |-> |^| { y e. S | x C_ y } ) ` X ) = |^| { y e. S | X C_ y } ) |
26 |
8 25
|
eqtrd |
|- ( ( K e. V /\ X e. ~P A ) -> ( U ` X ) = |^| { y e. S | X C_ y } ) |
27 |
5 26
|
sylan2br |
|- ( ( K e. V /\ X C_ A ) -> ( U ` X ) = |^| { y e. S | X C_ y } ) |