Step |
Hyp |
Ref |
Expression |
1 |
|
pcmpt.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
2 |
|
pcmpt.2 |
|- ( ph -> A. n e. Prime A e. NN0 ) |
3 |
|
pcmpt.3 |
|- ( ph -> N e. NN ) |
4 |
|
pcmpt.4 |
|- ( ph -> P e. Prime ) |
5 |
|
pcmpt.5 |
|- ( n = P -> A = B ) |
6 |
|
fveq2 |
|- ( p = 1 -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` 1 ) ) |
7 |
6
|
oveq2d |
|- ( p = 1 -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) ) |
8 |
|
breq2 |
|- ( p = 1 -> ( P <_ p <-> P <_ 1 ) ) |
9 |
8
|
ifbid |
|- ( p = 1 -> if ( P <_ p , B , 0 ) = if ( P <_ 1 , B , 0 ) ) |
10 |
7 9
|
eqeq12d |
|- ( p = 1 -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) ) |
11 |
10
|
imbi2d |
|- ( p = 1 -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) ) ) |
12 |
|
fveq2 |
|- ( p = k -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` k ) ) |
13 |
12
|
oveq2d |
|- ( p = k -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
14 |
|
breq2 |
|- ( p = k -> ( P <_ p <-> P <_ k ) ) |
15 |
14
|
ifbid |
|- ( p = k -> if ( P <_ p , B , 0 ) = if ( P <_ k , B , 0 ) ) |
16 |
13 15
|
eqeq12d |
|- ( p = k -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) |
17 |
16
|
imbi2d |
|- ( p = k -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) ) |
18 |
|
fveq2 |
|- ( p = ( k + 1 ) -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) |
19 |
18
|
oveq2d |
|- ( p = ( k + 1 ) -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) ) |
20 |
|
breq2 |
|- ( p = ( k + 1 ) -> ( P <_ p <-> P <_ ( k + 1 ) ) ) |
21 |
20
|
ifbid |
|- ( p = ( k + 1 ) -> if ( P <_ p , B , 0 ) = if ( P <_ ( k + 1 ) , B , 0 ) ) |
22 |
19 21
|
eqeq12d |
|- ( p = ( k + 1 ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
23 |
22
|
imbi2d |
|- ( p = ( k + 1 ) -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
24 |
|
fveq2 |
|- ( p = N -> ( seq 1 ( x. , F ) ` p ) = ( seq 1 ( x. , F ) ` N ) ) |
25 |
24
|
oveq2d |
|- ( p = N -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = ( P pCnt ( seq 1 ( x. , F ) ` N ) ) ) |
26 |
|
breq2 |
|- ( p = N -> ( P <_ p <-> P <_ N ) ) |
27 |
26
|
ifbid |
|- ( p = N -> if ( P <_ p , B , 0 ) = if ( P <_ N , B , 0 ) ) |
28 |
25 27
|
eqeq12d |
|- ( p = N -> ( ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) |
29 |
28
|
imbi2d |
|- ( p = N -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` p ) ) = if ( P <_ p , B , 0 ) ) <-> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) ) |
30 |
|
1z |
|- 1 e. ZZ |
31 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) ) |
32 |
30 31
|
ax-mp |
|- ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) |
33 |
|
1nn |
|- 1 e. NN |
34 |
|
1nprm |
|- -. 1 e. Prime |
35 |
|
eleq1 |
|- ( n = 1 -> ( n e. Prime <-> 1 e. Prime ) ) |
36 |
34 35
|
mtbiri |
|- ( n = 1 -> -. n e. Prime ) |
37 |
36
|
iffalsed |
|- ( n = 1 -> if ( n e. Prime , ( n ^ A ) , 1 ) = 1 ) |
38 |
|
1ex |
|- 1 e. _V |
39 |
37 1 38
|
fvmpt |
|- ( 1 e. NN -> ( F ` 1 ) = 1 ) |
40 |
33 39
|
ax-mp |
|- ( F ` 1 ) = 1 |
41 |
32 40
|
eqtri |
|- ( seq 1 ( x. , F ) ` 1 ) = 1 |
42 |
41
|
oveq2i |
|- ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = ( P pCnt 1 ) |
43 |
|
pc1 |
|- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
44 |
42 43
|
eqtrid |
|- ( P e. Prime -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = 0 ) |
45 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
46 |
|
1re |
|- 1 e. RR |
47 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
48 |
|
eluzelre |
|- ( P e. ( ZZ>= ` 2 ) -> P e. RR ) |
49 |
47 48
|
syl |
|- ( P e. Prime -> P e. RR ) |
50 |
|
ltnle |
|- ( ( 1 e. RR /\ P e. RR ) -> ( 1 < P <-> -. P <_ 1 ) ) |
51 |
46 49 50
|
sylancr |
|- ( P e. Prime -> ( 1 < P <-> -. P <_ 1 ) ) |
52 |
45 51
|
mpbid |
|- ( P e. Prime -> -. P <_ 1 ) |
53 |
52
|
iffalsed |
|- ( P e. Prime -> if ( P <_ 1 , B , 0 ) = 0 ) |
54 |
44 53
|
eqtr4d |
|- ( P e. Prime -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) |
55 |
4 54
|
syl |
|- ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` 1 ) ) = if ( P <_ 1 , B , 0 ) ) |
56 |
4
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P e. Prime ) |
57 |
1 2
|
pcmptcl |
|- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
58 |
57
|
simpld |
|- ( ph -> F : NN --> NN ) |
59 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
60 |
|
ffvelrn |
|- ( ( F : NN --> NN /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. NN ) |
61 |
58 59 60
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. NN ) |
62 |
61
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) e. NN ) |
63 |
56 62
|
pccld |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) e. NN0 ) |
64 |
63
|
nn0cnd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) e. CC ) |
65 |
64
|
addid2d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( P pCnt ( F ` ( k + 1 ) ) ) ) |
66 |
59
|
ad2antrl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) e. NN ) |
67 |
|
ovex |
|- ( n ^ A ) e. _V |
68 |
67 38
|
ifex |
|- if ( n e. Prime , ( n ^ A ) , 1 ) e. _V |
69 |
68
|
csbex |
|- [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V |
70 |
1
|
fvmpts |
|- ( ( ( k + 1 ) e. NN /\ [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V ) -> ( F ` ( k + 1 ) ) = [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) ) |
71 |
|
ovex |
|- ( k + 1 ) e. _V |
72 |
|
nfv |
|- F/ n ( k + 1 ) e. Prime |
73 |
|
nfcv |
|- F/_ n ( k + 1 ) |
74 |
|
nfcv |
|- F/_ n ^ |
75 |
|
nfcsb1v |
|- F/_ n [_ ( k + 1 ) / n ]_ A |
76 |
73 74 75
|
nfov |
|- F/_ n ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) |
77 |
|
nfcv |
|- F/_ n 1 |
78 |
72 76 77
|
nfif |
|- F/_ n if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) |
79 |
|
eleq1 |
|- ( n = ( k + 1 ) -> ( n e. Prime <-> ( k + 1 ) e. Prime ) ) |
80 |
|
id |
|- ( n = ( k + 1 ) -> n = ( k + 1 ) ) |
81 |
|
csbeq1a |
|- ( n = ( k + 1 ) -> A = [_ ( k + 1 ) / n ]_ A ) |
82 |
80 81
|
oveq12d |
|- ( n = ( k + 1 ) -> ( n ^ A ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
83 |
79 82
|
ifbieq1d |
|- ( n = ( k + 1 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
84 |
71 78 83
|
csbief |
|- [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) |
85 |
70 84
|
eqtrdi |
|- ( ( ( k + 1 ) e. NN /\ [_ ( k + 1 ) / n ]_ if ( n e. Prime , ( n ^ A ) , 1 ) e. _V ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
86 |
66 69 85
|
sylancl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
87 |
|
simprr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) = P ) |
88 |
87 56
|
eqeltrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( k + 1 ) e. Prime ) |
89 |
88
|
iftrued |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
90 |
87
|
csbeq1d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ ( k + 1 ) / n ]_ A = [_ P / n ]_ A ) |
91 |
|
nfcvd |
|- ( P e. Prime -> F/_ n B ) |
92 |
91 5
|
csbiegf |
|- ( P e. Prime -> [_ P / n ]_ A = B ) |
93 |
56 92
|
syl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ P / n ]_ A = B ) |
94 |
90 93
|
eqtrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> [_ ( k + 1 ) / n ]_ A = B ) |
95 |
87 94
|
oveq12d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) = ( P ^ B ) ) |
96 |
86 89 95
|
3eqtrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( F ` ( k + 1 ) ) = ( P ^ B ) ) |
97 |
96
|
oveq2d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = ( P pCnt ( P ^ B ) ) ) |
98 |
5
|
eleq1d |
|- ( n = P -> ( A e. NN0 <-> B e. NN0 ) ) |
99 |
98
|
rspcv |
|- ( P e. Prime -> ( A. n e. Prime A e. NN0 -> B e. NN0 ) ) |
100 |
4 2 99
|
sylc |
|- ( ph -> B e. NN0 ) |
101 |
100
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> B e. NN0 ) |
102 |
|
pcidlem |
|- ( ( P e. Prime /\ B e. NN0 ) -> ( P pCnt ( P ^ B ) ) = B ) |
103 |
56 101 102
|
syl2anc |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( P ^ B ) ) = B ) |
104 |
65 97 103
|
3eqtrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) |
105 |
|
oveq1 |
|- ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
106 |
105
|
eqeq1d |
|- ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B <-> ( 0 + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
107 |
104 106
|
syl5ibrcom |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
108 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
109 |
108
|
ad2antrl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> k e. RR ) |
110 |
|
ltp1 |
|- ( k e. RR -> k < ( k + 1 ) ) |
111 |
|
peano2re |
|- ( k e. RR -> ( k + 1 ) e. RR ) |
112 |
|
ltnle |
|- ( ( k e. RR /\ ( k + 1 ) e. RR ) -> ( k < ( k + 1 ) <-> -. ( k + 1 ) <_ k ) ) |
113 |
111 112
|
mpdan |
|- ( k e. RR -> ( k < ( k + 1 ) <-> -. ( k + 1 ) <_ k ) ) |
114 |
110 113
|
mpbid |
|- ( k e. RR -> -. ( k + 1 ) <_ k ) |
115 |
109 114
|
syl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> -. ( k + 1 ) <_ k ) |
116 |
87
|
breq1d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( k + 1 ) <_ k <-> P <_ k ) ) |
117 |
115 116
|
mtbid |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> -. P <_ k ) |
118 |
117
|
iffalsed |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( P <_ k , B , 0 ) = 0 ) |
119 |
118
|
eqeq2d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = 0 ) ) |
120 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
121 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
122 |
120 121
|
eleqtrdi |
|- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
123 |
|
seqp1 |
|- ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
124 |
122 123
|
syl |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) |
125 |
124
|
oveq2d |
|- ( ( ph /\ k e. NN ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) ) |
126 |
4
|
adantr |
|- ( ( ph /\ k e. NN ) -> P e. Prime ) |
127 |
57
|
simprd |
|- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
128 |
127
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` k ) e. NN ) |
129 |
|
nnz |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( seq 1 ( x. , F ) ` k ) e. ZZ ) |
130 |
|
nnne0 |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( seq 1 ( x. , F ) ` k ) =/= 0 ) |
131 |
129 130
|
jca |
|- ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) ) |
132 |
128 131
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) ) |
133 |
|
nnz |
|- ( ( F ` ( k + 1 ) ) e. NN -> ( F ` ( k + 1 ) ) e. ZZ ) |
134 |
|
nnne0 |
|- ( ( F ` ( k + 1 ) ) e. NN -> ( F ` ( k + 1 ) ) =/= 0 ) |
135 |
133 134
|
jca |
|- ( ( F ` ( k + 1 ) ) e. NN -> ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) |
136 |
61 135
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) |
137 |
|
pcmul |
|- ( ( P e. Prime /\ ( ( seq 1 ( x. , F ) ` k ) e. ZZ /\ ( seq 1 ( x. , F ) ` k ) =/= 0 ) /\ ( ( F ` ( k + 1 ) ) e. ZZ /\ ( F ` ( k + 1 ) ) =/= 0 ) ) -> ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
138 |
126 132 136 137
|
syl3anc |
|- ( ( ph /\ k e. NN ) -> ( P pCnt ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
139 |
125 138
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
140 |
139
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
141 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
142 |
4 141
|
syl |
|- ( ph -> P e. NN ) |
143 |
142
|
nnred |
|- ( ph -> P e. RR ) |
144 |
143
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P e. RR ) |
145 |
144
|
leidd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P <_ P ) |
146 |
145 87
|
breqtrrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> P <_ ( k + 1 ) ) |
147 |
146
|
iftrued |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> if ( P <_ ( k + 1 ) , B , 0 ) = B ) |
148 |
140 147
|
eqeq12d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) <-> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = B ) ) |
149 |
107 119 148
|
3imtr4d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) = P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
150 |
149
|
expr |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) = P -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
151 |
139
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) ) |
152 |
|
simplrr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( k + 1 ) =/= P ) |
153 |
152
|
necomd |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> P =/= ( k + 1 ) ) |
154 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> P e. Prime ) |
155 |
|
simpr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( k + 1 ) e. Prime ) |
156 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> A. n e. Prime A e. NN0 ) |
157 |
75
|
nfel1 |
|- F/ n [_ ( k + 1 ) / n ]_ A e. NN0 |
158 |
81
|
eleq1d |
|- ( n = ( k + 1 ) -> ( A e. NN0 <-> [_ ( k + 1 ) / n ]_ A e. NN0 ) ) |
159 |
157 158
|
rspc |
|- ( ( k + 1 ) e. Prime -> ( A. n e. Prime A e. NN0 -> [_ ( k + 1 ) / n ]_ A e. NN0 ) ) |
160 |
155 156 159
|
sylc |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> [_ ( k + 1 ) / n ]_ A e. NN0 ) |
161 |
|
prmdvdsexpr |
|- ( ( P e. Prime /\ ( k + 1 ) e. Prime /\ [_ ( k + 1 ) / n ]_ A e. NN0 ) -> ( P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) -> P = ( k + 1 ) ) ) |
162 |
154 155 160 161
|
syl3anc |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) -> P = ( k + 1 ) ) ) |
163 |
162
|
necon3ad |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P =/= ( k + 1 ) -> -. P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) ) |
164 |
153 163
|
mpd |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> -. P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
165 |
59
|
ad2antrl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) e. NN ) |
166 |
165 69 85
|
sylancl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) ) |
167 |
|
iftrue |
|- ( ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
168 |
166 167
|
sylan9eq |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) |
169 |
168
|
breq2d |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P || ( F ` ( k + 1 ) ) <-> P || ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) ) ) |
170 |
164 169
|
mtbird |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> -. P || ( F ` ( k + 1 ) ) ) |
171 |
58
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> F : NN --> NN ) |
172 |
171 165 60
|
syl2anc |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( F ` ( k + 1 ) ) e. NN ) |
173 |
172
|
adantr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) e. NN ) |
174 |
|
pceq0 |
|- ( ( P e. Prime /\ ( F ` ( k + 1 ) ) e. NN ) -> ( ( P pCnt ( F ` ( k + 1 ) ) ) = 0 <-> -. P || ( F ` ( k + 1 ) ) ) ) |
175 |
154 173 174
|
syl2anc |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( ( P pCnt ( F ` ( k + 1 ) ) ) = 0 <-> -. P || ( F ` ( k + 1 ) ) ) ) |
176 |
170 175
|
mpbird |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
177 |
|
iffalse |
|- ( -. ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ [_ ( k + 1 ) / n ]_ A ) , 1 ) = 1 ) |
178 |
166 177
|
sylan9eq |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = 1 ) |
179 |
178
|
oveq2d |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = ( P pCnt 1 ) ) |
180 |
4 43
|
syl |
|- ( ph -> ( P pCnt 1 ) = 0 ) |
181 |
180
|
ad2antrr |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt 1 ) = 0 ) |
182 |
179 181
|
eqtrd |
|- ( ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) /\ -. ( k + 1 ) e. Prime ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
183 |
176 182
|
pm2.61dan |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( F ` ( k + 1 ) ) ) = 0 ) |
184 |
183
|
oveq2d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + ( P pCnt ( F ` ( k + 1 ) ) ) ) = ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + 0 ) ) |
185 |
4
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. Prime ) |
186 |
128
|
adantrr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( seq 1 ( x. , F ) ` k ) e. NN ) |
187 |
185 186
|
pccld |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) e. NN0 ) |
188 |
187
|
nn0cnd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) e. CC ) |
189 |
188
|
addid1d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) + 0 ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
190 |
151 184 189
|
3eqtrd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = ( P pCnt ( seq 1 ( x. , F ) ` k ) ) ) |
191 |
142
|
adantr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. NN ) |
192 |
191
|
nnred |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> P e. RR ) |
193 |
165
|
nnred |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) e. RR ) |
194 |
192 193
|
ltlend |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P < ( k + 1 ) <-> ( P <_ ( k + 1 ) /\ ( k + 1 ) =/= P ) ) ) |
195 |
|
simprl |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> k e. NN ) |
196 |
|
nnleltp1 |
|- ( ( P e. NN /\ k e. NN ) -> ( P <_ k <-> P < ( k + 1 ) ) ) |
197 |
191 195 196
|
syl2anc |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ k <-> P < ( k + 1 ) ) ) |
198 |
|
simprr |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( k + 1 ) =/= P ) |
199 |
198
|
biantrud |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ ( k + 1 ) <-> ( P <_ ( k + 1 ) /\ ( k + 1 ) =/= P ) ) ) |
200 |
194 197 199
|
3bitr4rd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( P <_ ( k + 1 ) <-> P <_ k ) ) |
201 |
200
|
ifbid |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> if ( P <_ ( k + 1 ) , B , 0 ) = if ( P <_ k , B , 0 ) ) |
202 |
190 201
|
eqeq12d |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) <-> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) ) |
203 |
202
|
biimprd |
|- ( ( ph /\ ( k e. NN /\ ( k + 1 ) =/= P ) ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
204 |
203
|
expr |
|- ( ( ph /\ k e. NN ) -> ( ( k + 1 ) =/= P -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
205 |
150 204
|
pm2.61dne |
|- ( ( ph /\ k e. NN ) -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) |
206 |
205
|
expcom |
|- ( k e. NN -> ( ph -> ( ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
207 |
206
|
a2d |
|- ( k e. NN -> ( ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` k ) ) = if ( P <_ k , B , 0 ) ) -> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` ( k + 1 ) ) ) = if ( P <_ ( k + 1 ) , B , 0 ) ) ) ) |
208 |
11 17 23 29 55 207
|
nnind |
|- ( N e. NN -> ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) ) |
209 |
3 208
|
mpcom |
|- ( ph -> ( P pCnt ( seq 1 ( x. , F ) ` N ) ) = if ( P <_ N , B , 0 ) ) |