| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pcmpt.1 |  |-  F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) | 
						
							| 2 |  | pcmpt.2 |  |-  ( ph -> A. n e. Prime A e. NN0 ) | 
						
							| 3 |  | pm2.27 |  |-  ( n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> A e. NN0 ) ) | 
						
							| 4 |  | iftrue |  |-  ( n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) = ( n ^ A ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( n e. Prime /\ A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) = ( n ^ A ) ) | 
						
							| 6 |  | prmnn |  |-  ( n e. Prime -> n e. NN ) | 
						
							| 7 |  | nnexpcl |  |-  ( ( n e. NN /\ A e. NN0 ) -> ( n ^ A ) e. NN ) | 
						
							| 8 | 6 7 | sylan |  |-  ( ( n e. Prime /\ A e. NN0 ) -> ( n ^ A ) e. NN ) | 
						
							| 9 | 5 8 | eqeltrd |  |-  ( ( n e. Prime /\ A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) | 
						
							| 10 | 9 | ex |  |-  ( n e. Prime -> ( A e. NN0 -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) | 
						
							| 11 | 3 10 | syld |  |-  ( n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) | 
						
							| 12 |  | iffalse |  |-  ( -. n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) = 1 ) | 
						
							| 13 |  | 1nn |  |-  1 e. NN | 
						
							| 14 | 12 13 | eqeltrdi |  |-  ( -. n e. Prime -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) | 
						
							| 15 | 14 | a1d |  |-  ( -. n e. Prime -> ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) | 
						
							| 16 | 11 15 | pm2.61i |  |-  ( ( n e. Prime -> A e. NN0 ) -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) | 
						
							| 17 | 16 | a1d |  |-  ( ( n e. Prime -> A e. NN0 ) -> ( n e. NN -> if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) ) | 
						
							| 18 | 17 | ralimi2 |  |-  ( A. n e. Prime A e. NN0 -> A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) | 
						
							| 19 | 2 18 | syl |  |-  ( ph -> A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN ) | 
						
							| 20 | 1 | fmpt |  |-  ( A. n e. NN if ( n e. Prime , ( n ^ A ) , 1 ) e. NN <-> F : NN --> NN ) | 
						
							| 21 | 19 20 | sylib |  |-  ( ph -> F : NN --> NN ) | 
						
							| 22 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 23 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 24 | 21 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. NN ) | 
						
							| 25 |  | nnmulcl |  |-  ( ( k e. NN /\ p e. NN ) -> ( k x. p ) e. NN ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ ( k e. NN /\ p e. NN ) ) -> ( k x. p ) e. NN ) | 
						
							| 27 | 22 23 24 26 | seqf |  |-  ( ph -> seq 1 ( x. , F ) : NN --> NN ) | 
						
							| 28 | 21 27 | jca |  |-  ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |