Step |
Hyp |
Ref |
Expression |
1 |
|
pcmpt.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) |
2 |
|
pcmpt.2 |
|- ( ph -> A. n e. Prime A e. NN0 ) |
3 |
|
pcmpt.3 |
|- ( ph -> N e. NN ) |
4 |
|
pcmptdvds.3 |
|- ( ph -> M e. ( ZZ>= ` N ) ) |
5 |
|
nfv |
|- F/ m A e. NN0 |
6 |
|
nfcsb1v |
|- F/_ n [_ m / n ]_ A |
7 |
6
|
nfel1 |
|- F/ n [_ m / n ]_ A e. NN0 |
8 |
|
csbeq1a |
|- ( n = m -> A = [_ m / n ]_ A ) |
9 |
8
|
eleq1d |
|- ( n = m -> ( A e. NN0 <-> [_ m / n ]_ A e. NN0 ) ) |
10 |
5 7 9
|
cbvralw |
|- ( A. n e. Prime A e. NN0 <-> A. m e. Prime [_ m / n ]_ A e. NN0 ) |
11 |
2 10
|
sylib |
|- ( ph -> A. m e. Prime [_ m / n ]_ A e. NN0 ) |
12 |
|
csbeq1 |
|- ( m = p -> [_ m / n ]_ A = [_ p / n ]_ A ) |
13 |
12
|
eleq1d |
|- ( m = p -> ( [_ m / n ]_ A e. NN0 <-> [_ p / n ]_ A e. NN0 ) ) |
14 |
13
|
rspcv |
|- ( p e. Prime -> ( A. m e. Prime [_ m / n ]_ A e. NN0 -> [_ p / n ]_ A e. NN0 ) ) |
15 |
11 14
|
mpan9 |
|- ( ( ph /\ p e. Prime ) -> [_ p / n ]_ A e. NN0 ) |
16 |
15
|
nn0ge0d |
|- ( ( ph /\ p e. Prime ) -> 0 <_ [_ p / n ]_ A ) |
17 |
|
0le0 |
|- 0 <_ 0 |
18 |
|
breq2 |
|- ( [_ p / n ]_ A = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) -> ( 0 <_ [_ p / n ]_ A <-> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) ) |
19 |
|
breq2 |
|- ( 0 = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) ) |
20 |
18 19
|
ifboth |
|- ( ( 0 <_ [_ p / n ]_ A /\ 0 <_ 0 ) -> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) |
21 |
16 17 20
|
sylancl |
|- ( ( ph /\ p e. Prime ) -> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) |
22 |
|
nfcv |
|- F/_ m if ( n e. Prime , ( n ^ A ) , 1 ) |
23 |
|
nfv |
|- F/ n m e. Prime |
24 |
|
nfcv |
|- F/_ n m |
25 |
|
nfcv |
|- F/_ n ^ |
26 |
24 25 6
|
nfov |
|- F/_ n ( m ^ [_ m / n ]_ A ) |
27 |
|
nfcv |
|- F/_ n 1 |
28 |
23 26 27
|
nfif |
|- F/_ n if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) |
29 |
|
eleq1w |
|- ( n = m -> ( n e. Prime <-> m e. Prime ) ) |
30 |
|
id |
|- ( n = m -> n = m ) |
31 |
30 8
|
oveq12d |
|- ( n = m -> ( n ^ A ) = ( m ^ [_ m / n ]_ A ) ) |
32 |
29 31
|
ifbieq1d |
|- ( n = m -> if ( n e. Prime , ( n ^ A ) , 1 ) = if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) ) |
33 |
22 28 32
|
cbvmpt |
|- ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) = ( m e. NN |-> if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) ) |
34 |
1 33
|
eqtri |
|- F = ( m e. NN |-> if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) ) |
35 |
11
|
adantr |
|- ( ( ph /\ p e. Prime ) -> A. m e. Prime [_ m / n ]_ A e. NN0 ) |
36 |
3
|
adantr |
|- ( ( ph /\ p e. Prime ) -> N e. NN ) |
37 |
|
simpr |
|- ( ( ph /\ p e. Prime ) -> p e. Prime ) |
38 |
4
|
adantr |
|- ( ( ph /\ p e. Prime ) -> M e. ( ZZ>= ` N ) ) |
39 |
34 35 36 37 12 38
|
pcmpt2 |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) |
40 |
21 39
|
breqtrrd |
|- ( ( ph /\ p e. Prime ) -> 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) |
41 |
40
|
ralrimiva |
|- ( ph -> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) |
42 |
1 2
|
pcmptcl |
|- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
43 |
42
|
simprd |
|- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
44 |
|
eluznn |
|- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> M e. NN ) |
45 |
3 4 44
|
syl2anc |
|- ( ph -> M e. NN ) |
46 |
43 45
|
ffvelrnd |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) e. NN ) |
47 |
46
|
nnzd |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) e. ZZ ) |
48 |
43 3
|
ffvelrnd |
|- ( ph -> ( seq 1 ( x. , F ) ` N ) e. NN ) |
49 |
|
znq |
|- ( ( ( seq 1 ( x. , F ) ` M ) e. ZZ /\ ( seq 1 ( x. , F ) ` N ) e. NN ) -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ ) |
50 |
47 48 49
|
syl2anc |
|- ( ph -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ ) |
51 |
|
pcz |
|- ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ -> ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ <-> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) ) |
52 |
50 51
|
syl |
|- ( ph -> ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ <-> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) ) |
53 |
41 52
|
mpbird |
|- ( ph -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ ) |
54 |
48
|
nnzd |
|- ( ph -> ( seq 1 ( x. , F ) ` N ) e. ZZ ) |
55 |
48
|
nnne0d |
|- ( ph -> ( seq 1 ( x. , F ) ` N ) =/= 0 ) |
56 |
|
dvdsval2 |
|- ( ( ( seq 1 ( x. , F ) ` N ) e. ZZ /\ ( seq 1 ( x. , F ) ` N ) =/= 0 /\ ( seq 1 ( x. , F ) ` M ) e. ZZ ) -> ( ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) <-> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ ) ) |
57 |
54 55 47 56
|
syl3anc |
|- ( ph -> ( ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) <-> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ ) ) |
58 |
53 57
|
mpbird |
|- ( ph -> ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) ) |