| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pcmpt.1 | 
							 |-  F = ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							pcmpt.2 | 
							 |-  ( ph -> A. n e. Prime A e. NN0 )  | 
						
						
							| 3 | 
							
								
							 | 
							pcmpt.3 | 
							 |-  ( ph -> N e. NN )  | 
						
						
							| 4 | 
							
								
							 | 
							pcmptdvds.3 | 
							 |-  ( ph -> M e. ( ZZ>= ` N ) )  | 
						
						
							| 5 | 
							
								
							 | 
							nfv | 
							 |-  F/ m A e. NN0  | 
						
						
							| 6 | 
							
								
							 | 
							nfcsb1v | 
							 |-  F/_ n [_ m / n ]_ A  | 
						
						
							| 7 | 
							
								6
							 | 
							nfel1 | 
							 |-  F/ n [_ m / n ]_ A e. NN0  | 
						
						
							| 8 | 
							
								
							 | 
							csbeq1a | 
							 |-  ( n = m -> A = [_ m / n ]_ A )  | 
						
						
							| 9 | 
							
								8
							 | 
							eleq1d | 
							 |-  ( n = m -> ( A e. NN0 <-> [_ m / n ]_ A e. NN0 ) )  | 
						
						
							| 10 | 
							
								5 7 9
							 | 
							cbvralw | 
							 |-  ( A. n e. Prime A e. NN0 <-> A. m e. Prime [_ m / n ]_ A e. NN0 )  | 
						
						
							| 11 | 
							
								2 10
							 | 
							sylib | 
							 |-  ( ph -> A. m e. Prime [_ m / n ]_ A e. NN0 )  | 
						
						
							| 12 | 
							
								
							 | 
							csbeq1 | 
							 |-  ( m = p -> [_ m / n ]_ A = [_ p / n ]_ A )  | 
						
						
							| 13 | 
							
								12
							 | 
							eleq1d | 
							 |-  ( m = p -> ( [_ m / n ]_ A e. NN0 <-> [_ p / n ]_ A e. NN0 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rspcv | 
							 |-  ( p e. Prime -> ( A. m e. Prime [_ m / n ]_ A e. NN0 -> [_ p / n ]_ A e. NN0 ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							mpan9 | 
							 |-  ( ( ph /\ p e. Prime ) -> [_ p / n ]_ A e. NN0 )  | 
						
						
							| 16 | 
							
								15
							 | 
							nn0ge0d | 
							 |-  ( ( ph /\ p e. Prime ) -> 0 <_ [_ p / n ]_ A )  | 
						
						
							| 17 | 
							
								
							 | 
							0le0 | 
							 |-  0 <_ 0  | 
						
						
							| 18 | 
							
								
							 | 
							breq2 | 
							 |-  ( [_ p / n ]_ A = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) -> ( 0 <_ [_ p / n ]_ A <-> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							breq2 | 
							 |-  ( 0 = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) -> ( 0 <_ 0 <-> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							ifboth | 
							 |-  ( ( 0 <_ [_ p / n ]_ A /\ 0 <_ 0 ) -> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) )  | 
						
						
							| 21 | 
							
								16 17 20
							 | 
							sylancl | 
							 |-  ( ( ph /\ p e. Prime ) -> 0 <_ if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ m if ( n e. Prime , ( n ^ A ) , 1 )  | 
						
						
							| 23 | 
							
								
							 | 
							nfv | 
							 |-  F/ n m e. Prime  | 
						
						
							| 24 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ n m  | 
						
						
							| 25 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ n ^  | 
						
						
							| 26 | 
							
								24 25 6
							 | 
							nfov | 
							 |-  F/_ n ( m ^ [_ m / n ]_ A )  | 
						
						
							| 27 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ n 1  | 
						
						
							| 28 | 
							
								23 26 27
							 | 
							nfif | 
							 |-  F/_ n if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 )  | 
						
						
							| 29 | 
							
								
							 | 
							eleq1w | 
							 |-  ( n = m -> ( n e. Prime <-> m e. Prime ) )  | 
						
						
							| 30 | 
							
								
							 | 
							id | 
							 |-  ( n = m -> n = m )  | 
						
						
							| 31 | 
							
								30 8
							 | 
							oveq12d | 
							 |-  ( n = m -> ( n ^ A ) = ( m ^ [_ m / n ]_ A ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							ifbieq1d | 
							 |-  ( n = m -> if ( n e. Prime , ( n ^ A ) , 1 ) = if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) )  | 
						
						
							| 33 | 
							
								22 28 32
							 | 
							cbvmpt | 
							 |-  ( n e. NN |-> if ( n e. Prime , ( n ^ A ) , 1 ) ) = ( m e. NN |-> if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) )  | 
						
						
							| 34 | 
							
								1 33
							 | 
							eqtri | 
							 |-  F = ( m e. NN |-> if ( m e. Prime , ( m ^ [_ m / n ]_ A ) , 1 ) )  | 
						
						
							| 35 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ph /\ p e. Prime ) -> A. m e. Prime [_ m / n ]_ A e. NN0 )  | 
						
						
							| 36 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ p e. Prime ) -> N e. NN )  | 
						
						
							| 37 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ p e. Prime ) -> p e. Prime )  | 
						
						
							| 38 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ p e. Prime ) -> M e. ( ZZ>= ` N ) )  | 
						
						
							| 39 | 
							
								34 35 36 37 12 38
							 | 
							pcmpt2 | 
							 |-  ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) = if ( ( p <_ M /\ -. p <_ N ) , [_ p / n ]_ A , 0 ) )  | 
						
						
							| 40 | 
							
								21 39
							 | 
							breqtrrd | 
							 |-  ( ( ph /\ p e. Prime ) -> 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							ralrimiva | 
							 |-  ( ph -> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) )  | 
						
						
							| 42 | 
							
								1 2
							 | 
							pcmptcl | 
							 |-  ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							simprd | 
							 |-  ( ph -> seq 1 ( x. , F ) : NN --> NN )  | 
						
						
							| 44 | 
							
								
							 | 
							eluznn | 
							 |-  ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> M e. NN )  | 
						
						
							| 45 | 
							
								3 4 44
							 | 
							syl2anc | 
							 |-  ( ph -> M e. NN )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` M ) e. NN )  | 
						
						
							| 47 | 
							
								46
							 | 
							nnzd | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` M ) e. ZZ )  | 
						
						
							| 48 | 
							
								43 3
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` N ) e. NN )  | 
						
						
							| 49 | 
							
								
							 | 
							znq | 
							 |-  ( ( ( seq 1 ( x. , F ) ` M ) e. ZZ /\ ( seq 1 ( x. , F ) ` N ) e. NN ) -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ )  | 
						
						
							| 50 | 
							
								47 48 49
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ )  | 
						
						
							| 51 | 
							
								
							 | 
							pcz | 
							 |-  ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. QQ -> ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ <-> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							syl | 
							 |-  ( ph -> ( ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ <-> A. p e. Prime 0 <_ ( p pCnt ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) ) ) )  | 
						
						
							| 53 | 
							
								41 52
							 | 
							mpbird | 
							 |-  ( ph -> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ )  | 
						
						
							| 54 | 
							
								48
							 | 
							nnzd | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` N ) e. ZZ )  | 
						
						
							| 55 | 
							
								48
							 | 
							nnne0d | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` N ) =/= 0 )  | 
						
						
							| 56 | 
							
								
							 | 
							dvdsval2 | 
							 |-  ( ( ( seq 1 ( x. , F ) ` N ) e. ZZ /\ ( seq 1 ( x. , F ) ` N ) =/= 0 /\ ( seq 1 ( x. , F ) ` M ) e. ZZ ) -> ( ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) <-> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ ) )  | 
						
						
							| 57 | 
							
								54 55 47 56
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) <-> ( ( seq 1 ( x. , F ) ` M ) / ( seq 1 ( x. , F ) ` N ) ) e. ZZ ) )  | 
						
						
							| 58 | 
							
								53 57
							 | 
							mpbird | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` N ) || ( seq 1 ( x. , F ) ` M ) )  |