Metamath Proof Explorer


Theorem pcmul

Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcmul
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < )
2 eqid
 |-  sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < )
3 eqid
 |-  sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < )
4 1 2 3 pcpremul
 |-  ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) + sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) )
5 1 pczpre
 |-  ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) )
6 5 3adant3
 |-  ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) )
7 2 pczpre
 |-  ( ( P e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) )
8 7 3adant2
 |-  ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) )
9 6 8 oveq12d
 |-  ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( ( P pCnt A ) + ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) + sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) )
10 zmulcl
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A x. B ) e. ZZ )
11 10 ad2ant2r
 |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A x. B ) e. ZZ )
12 zcn
 |-  ( A e. ZZ -> A e. CC )
13 12 anim1i
 |-  ( ( A e. ZZ /\ A =/= 0 ) -> ( A e. CC /\ A =/= 0 ) )
14 zcn
 |-  ( B e. ZZ -> B e. CC )
15 14 anim1i
 |-  ( ( B e. ZZ /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) )
16 mulne0
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 )
17 13 15 16 syl2an
 |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 )
18 11 17 jca
 |-  ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( ( A x. B ) e. ZZ /\ ( A x. B ) =/= 0 ) )
19 3 pczpre
 |-  ( ( P e. Prime /\ ( ( A x. B ) e. ZZ /\ ( A x. B ) =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) )
20 18 19 sylan2
 |-  ( ( P e. Prime /\ ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) )
21 20 3impb
 |-  ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) )
22 4 9 21 3eqtr4rd
 |-  ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) )