| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) |
| 2 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) |
| 3 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) |
| 4 |
1 2 3
|
pcpremul |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) + sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) ) |
| 5 |
1
|
pczpre |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
| 6 |
5
|
3adant3 |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
| 7 |
2
|
pczpre |
|- ( ( P e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
| 8 |
7
|
3adant2 |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
| 9 |
6 8
|
oveq12d |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( ( P pCnt A ) + ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) + sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) |
| 10 |
|
zmulcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A x. B ) e. ZZ ) |
| 11 |
10
|
ad2ant2r |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A x. B ) e. ZZ ) |
| 12 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 13 |
12
|
anim1i |
|- ( ( A e. ZZ /\ A =/= 0 ) -> ( A e. CC /\ A =/= 0 ) ) |
| 14 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
| 15 |
14
|
anim1i |
|- ( ( B e. ZZ /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 16 |
|
mulne0 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 ) |
| 17 |
13 15 16
|
syl2an |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( A x. B ) =/= 0 ) |
| 18 |
11 17
|
jca |
|- ( ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( ( A x. B ) e. ZZ /\ ( A x. B ) =/= 0 ) ) |
| 19 |
3
|
pczpre |
|- ( ( P e. Prime /\ ( ( A x. B ) e. ZZ /\ ( A x. B ) =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) ) |
| 20 |
18 19
|
sylan2 |
|- ( ( P e. Prime /\ ( ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) ) |
| 21 |
20
|
3impb |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = sup ( { n e. NN0 | ( P ^ n ) || ( A x. B ) } , RR , < ) ) |
| 22 |
4 9 21
|
3eqtr4rd |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) |