Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pcndvds | |- ( ( P e. Prime /\ N e. NN ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
2 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
3 | 1 2 | jca | |- ( N e. NN -> ( N e. ZZ /\ N =/= 0 ) ) |
4 | pczndvds | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |
|
5 | 3 4 | sylan2 | |- ( ( P e. Prime /\ N e. NN ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |