Metamath Proof Explorer


Theorem pcndvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcndvds
|- ( ( P e. Prime /\ N e. NN ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N )

Proof

Step Hyp Ref Expression
1 nnz
 |-  ( N e. NN -> N e. ZZ )
2 nnne0
 |-  ( N e. NN -> N =/= 0 )
3 1 2 jca
 |-  ( N e. NN -> ( N e. ZZ /\ N =/= 0 ) )
4 pczndvds
 |-  ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N )
5 3 4 sylan2
 |-  ( ( P e. Prime /\ N e. NN ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N )