Description: The remainder after dividing out all factors of P is not divisible by P . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcndvds2 | |- ( ( P e. Prime /\ N e. NN ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnz | |- ( N e. NN -> N e. ZZ ) | |
| 2 | nnne0 | |- ( N e. NN -> N =/= 0 ) | |
| 3 | 1 2 | jca | |- ( N e. NN -> ( N e. ZZ /\ N =/= 0 ) ) | 
| 4 | pczndvds2 | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) | |
| 5 | 3 4 | sylan2 | |- ( ( P e. Prime /\ N e. NN ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) |