Metamath Proof Explorer


Theorem pcndvds2

Description: The remainder after dividing out all factors of P is not divisible by P . (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcndvds2
|- ( ( P e. Prime /\ N e. NN ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) )

Proof

Step Hyp Ref Expression
1 nnz
 |-  ( N e. NN -> N e. ZZ )
2 nnne0
 |-  ( N e. NN -> N =/= 0 )
3 1 2 jca
 |-  ( N e. NN -> ( N e. ZZ /\ N =/= 0 ) )
4 pczndvds2
 |-  ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) )
5 3 4 sylan2
 |-  ( ( P e. Prime /\ N e. NN ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) )