Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
|- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
2 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
3 |
2
|
ad2antrl |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> x e. CC ) |
4 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
5 |
4
|
ad2antll |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> y e. CC ) |
6 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
7 |
6
|
ad2antll |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= 0 ) |
8 |
3 5 7
|
divnegd |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> -u ( x / y ) = ( -u x / y ) ) |
9 |
8
|
oveq2d |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( P pCnt -u ( x / y ) ) = ( P pCnt ( -u x / y ) ) ) |
10 |
|
neg0 |
|- -u 0 = 0 |
11 |
|
simpr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x = 0 ) -> x = 0 ) |
12 |
11
|
negeqd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x = 0 ) -> -u x = -u 0 ) |
13 |
10 12 11
|
3eqtr4a |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x = 0 ) -> -u x = x ) |
14 |
13
|
oveq1d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x = 0 ) -> ( -u x / y ) = ( x / y ) ) |
15 |
14
|
oveq2d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x = 0 ) -> ( P pCnt ( -u x / y ) ) = ( P pCnt ( x / y ) ) ) |
16 |
|
simpll |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> P e. Prime ) |
17 |
|
simplrl |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> x e. ZZ ) |
18 |
17
|
znegcld |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> -u x e. ZZ ) |
19 |
|
simpr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> x =/= 0 ) |
20 |
2
|
negne0bd |
|- ( x e. ZZ -> ( x =/= 0 <-> -u x =/= 0 ) ) |
21 |
17 20
|
syl |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( x =/= 0 <-> -u x =/= 0 ) ) |
22 |
19 21
|
mpbid |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> -u x =/= 0 ) |
23 |
|
simplrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> y e. NN ) |
24 |
|
pcdiv |
|- ( ( P e. Prime /\ ( -u x e. ZZ /\ -u x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( -u x / y ) ) = ( ( P pCnt -u x ) - ( P pCnt y ) ) ) |
25 |
16 18 22 23 24
|
syl121anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( P pCnt ( -u x / y ) ) = ( ( P pCnt -u x ) - ( P pCnt y ) ) ) |
26 |
|
pcdiv |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
27 |
16 17 19 23 26
|
syl121anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
28 |
|
eqid |
|- sup ( { y e. NN0 | ( P ^ y ) || -u x } , RR , < ) = sup ( { y e. NN0 | ( P ^ y ) || -u x } , RR , < ) |
29 |
28
|
pczpre |
|- ( ( P e. Prime /\ ( -u x e. ZZ /\ -u x =/= 0 ) ) -> ( P pCnt -u x ) = sup ( { y e. NN0 | ( P ^ y ) || -u x } , RR , < ) ) |
30 |
16 18 22 29
|
syl12anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( P pCnt -u x ) = sup ( { y e. NN0 | ( P ^ y ) || -u x } , RR , < ) ) |
31 |
|
eqid |
|- sup ( { y e. NN0 | ( P ^ y ) || x } , RR , < ) = sup ( { y e. NN0 | ( P ^ y ) || x } , RR , < ) |
32 |
31
|
pczpre |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) = sup ( { y e. NN0 | ( P ^ y ) || x } , RR , < ) ) |
33 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
34 |
|
zexpcl |
|- ( ( P e. ZZ /\ y e. NN0 ) -> ( P ^ y ) e. ZZ ) |
35 |
33 34
|
sylan |
|- ( ( P e. Prime /\ y e. NN0 ) -> ( P ^ y ) e. ZZ ) |
36 |
|
simpl |
|- ( ( x e. ZZ /\ x =/= 0 ) -> x e. ZZ ) |
37 |
|
dvdsnegb |
|- ( ( ( P ^ y ) e. ZZ /\ x e. ZZ ) -> ( ( P ^ y ) || x <-> ( P ^ y ) || -u x ) ) |
38 |
35 36 37
|
syl2an |
|- ( ( ( P e. Prime /\ y e. NN0 ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( ( P ^ y ) || x <-> ( P ^ y ) || -u x ) ) |
39 |
38
|
an32s |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) /\ y e. NN0 ) -> ( ( P ^ y ) || x <-> ( P ^ y ) || -u x ) ) |
40 |
39
|
rabbidva |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> { y e. NN0 | ( P ^ y ) || x } = { y e. NN0 | ( P ^ y ) || -u x } ) |
41 |
40
|
supeq1d |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> sup ( { y e. NN0 | ( P ^ y ) || x } , RR , < ) = sup ( { y e. NN0 | ( P ^ y ) || -u x } , RR , < ) ) |
42 |
32 41
|
eqtrd |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) = sup ( { y e. NN0 | ( P ^ y ) || -u x } , RR , < ) ) |
43 |
16 17 19 42
|
syl12anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( P pCnt x ) = sup ( { y e. NN0 | ( P ^ y ) || -u x } , RR , < ) ) |
44 |
30 43
|
eqtr4d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( P pCnt -u x ) = ( P pCnt x ) ) |
45 |
44
|
oveq1d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( ( P pCnt -u x ) - ( P pCnt y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
46 |
27 45
|
eqtr4d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt -u x ) - ( P pCnt y ) ) ) |
47 |
25 46
|
eqtr4d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) /\ x =/= 0 ) -> ( P pCnt ( -u x / y ) ) = ( P pCnt ( x / y ) ) ) |
48 |
15 47
|
pm2.61dane |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( P pCnt ( -u x / y ) ) = ( P pCnt ( x / y ) ) ) |
49 |
9 48
|
eqtrd |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( P pCnt -u ( x / y ) ) = ( P pCnt ( x / y ) ) ) |
50 |
|
negeq |
|- ( A = ( x / y ) -> -u A = -u ( x / y ) ) |
51 |
50
|
oveq2d |
|- ( A = ( x / y ) -> ( P pCnt -u A ) = ( P pCnt -u ( x / y ) ) ) |
52 |
|
oveq2 |
|- ( A = ( x / y ) -> ( P pCnt A ) = ( P pCnt ( x / y ) ) ) |
53 |
51 52
|
eqeq12d |
|- ( A = ( x / y ) -> ( ( P pCnt -u A ) = ( P pCnt A ) <-> ( P pCnt -u ( x / y ) ) = ( P pCnt ( x / y ) ) ) ) |
54 |
49 53
|
syl5ibrcom |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( A = ( x / y ) -> ( P pCnt -u A ) = ( P pCnt A ) ) ) |
55 |
54
|
rexlimdvva |
|- ( P e. Prime -> ( E. x e. ZZ E. y e. NN A = ( x / y ) -> ( P pCnt -u A ) = ( P pCnt A ) ) ) |
56 |
1 55
|
syl5bi |
|- ( P e. Prime -> ( A e. QQ -> ( P pCnt -u A ) = ( P pCnt A ) ) ) |
57 |
56
|
imp |
|- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt -u A ) = ( P pCnt A ) ) |