| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pclem.1 |
|- A = { n e. NN0 | ( P ^ n ) || N } |
| 2 |
|
pclem.2 |
|- S = sup ( A , RR , < ) |
| 3 |
|
1z |
|- 1 e. ZZ |
| 4 |
|
eleq1 |
|- ( N = 1 -> ( N e. ZZ <-> 1 e. ZZ ) ) |
| 5 |
3 4
|
mpbiri |
|- ( N = 1 -> N e. ZZ ) |
| 6 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 7 |
|
neeq1 |
|- ( N = 1 -> ( N =/= 0 <-> 1 =/= 0 ) ) |
| 8 |
6 7
|
mpbiri |
|- ( N = 1 -> N =/= 0 ) |
| 9 |
5 8
|
jca |
|- ( N = 1 -> ( N e. ZZ /\ N =/= 0 ) ) |
| 10 |
1 2
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 11 |
9 10
|
sylan2 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 12 |
11
|
simprd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) || N ) |
| 13 |
|
simpr |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> N = 1 ) |
| 14 |
12 13
|
breqtrd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) || 1 ) |
| 15 |
|
eluz2nn |
|- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
| 16 |
15
|
adantr |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> P e. NN ) |
| 17 |
11
|
simpld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S e. NN0 ) |
| 18 |
16 17
|
nnexpcld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) e. NN ) |
| 19 |
18
|
nnzd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) e. ZZ ) |
| 20 |
|
1nn |
|- 1 e. NN |
| 21 |
|
dvdsle |
|- ( ( ( P ^ S ) e. ZZ /\ 1 e. NN ) -> ( ( P ^ S ) || 1 -> ( P ^ S ) <_ 1 ) ) |
| 22 |
19 20 21
|
sylancl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( ( P ^ S ) || 1 -> ( P ^ S ) <_ 1 ) ) |
| 23 |
14 22
|
mpd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) <_ 1 ) |
| 24 |
16
|
nncnd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> P e. CC ) |
| 25 |
24
|
exp0d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ 0 ) = 1 ) |
| 26 |
23 25
|
breqtrrd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( P ^ S ) <_ ( P ^ 0 ) ) |
| 27 |
16
|
nnred |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> P e. RR ) |
| 28 |
17
|
nn0zd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S e. ZZ ) |
| 29 |
|
0zd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> 0 e. ZZ ) |
| 30 |
|
eluz2gt1 |
|- ( P e. ( ZZ>= ` 2 ) -> 1 < P ) |
| 31 |
30
|
adantr |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> 1 < P ) |
| 32 |
27 28 29 31
|
leexp2d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( S <_ 0 <-> ( P ^ S ) <_ ( P ^ 0 ) ) ) |
| 33 |
26 32
|
mpbird |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S <_ 0 ) |
| 34 |
10
|
simpld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 35 |
9 34
|
sylan2 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S e. NN0 ) |
| 36 |
|
nn0le0eq0 |
|- ( S e. NN0 -> ( S <_ 0 <-> S = 0 ) ) |
| 37 |
35 36
|
syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> ( S <_ 0 <-> S = 0 ) ) |
| 38 |
33 37
|
mpbid |
|- ( ( P e. ( ZZ>= ` 2 ) /\ N = 1 ) -> S = 0 ) |