| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcpremul.1 |
|- S = sup ( { n e. NN0 | ( P ^ n ) || M } , RR , < ) |
| 2 |
|
pcpremul.2 |
|- T = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
| 3 |
|
pcpremul.3 |
|- U = sup ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } , RR , < ) |
| 4 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. ( ZZ>= ` 2 ) ) |
| 6 |
|
zmulcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |
| 7 |
6
|
ad2ant2r |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) e. ZZ ) |
| 8 |
7
|
3adant1 |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) e. ZZ ) |
| 9 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 10 |
9
|
anim1i |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( M e. CC /\ M =/= 0 ) ) |
| 11 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 12 |
11
|
anim1i |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( N e. CC /\ N =/= 0 ) ) |
| 13 |
|
mulne0 |
|- ( ( ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
| 14 |
10 12 13
|
syl2an |
|- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
| 15 |
14
|
3adant1 |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
| 16 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || ( M x. N ) } = { n e. NN0 | ( P ^ n ) || ( M x. N ) } |
| 17 |
16
|
pclem |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) ) -> ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } C_ ZZ /\ { n e. NN0 | ( P ^ n ) || ( M x. N ) } =/= (/) /\ E. x e. ZZ A. y e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } y <_ x ) ) |
| 18 |
5 8 15 17
|
syl12anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } C_ ZZ /\ { n e. NN0 | ( P ^ n ) || ( M x. N ) } =/= (/) /\ E. x e. ZZ A. y e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } y <_ x ) ) |
| 19 |
18
|
simp1d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> { n e. NN0 | ( P ^ n ) || ( M x. N ) } C_ ZZ ) |
| 20 |
18
|
simp3d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> E. x e. ZZ A. y e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } y <_ x ) |
| 21 |
|
oveq2 |
|- ( x = ( S + T ) -> ( P ^ x ) = ( P ^ ( S + T ) ) ) |
| 22 |
21
|
breq1d |
|- ( x = ( S + T ) -> ( ( P ^ x ) || ( M x. N ) <-> ( P ^ ( S + T ) ) || ( M x. N ) ) ) |
| 23 |
|
simp2l |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> M e. ZZ ) |
| 24 |
|
simp2r |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> M =/= 0 ) |
| 25 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || M } = { n e. NN0 | ( P ^ n ) || M } |
| 26 |
25 1
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || M ) ) |
| 27 |
5 23 24 26
|
syl12anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || M ) ) |
| 28 |
27
|
simpld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 29 |
|
simp3l |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. ZZ ) |
| 30 |
|
simp3r |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N =/= 0 ) |
| 31 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
| 32 |
31 2
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( T e. NN0 /\ ( P ^ T ) || N ) ) |
| 33 |
5 29 30 32
|
syl12anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( T e. NN0 /\ ( P ^ T ) || N ) ) |
| 34 |
33
|
simpld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> T e. NN0 ) |
| 35 |
28 34
|
nn0addcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) e. NN0 ) |
| 36 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 37 |
36
|
3ad2ant1 |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. NN ) |
| 38 |
37 35
|
nnexpcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) e. NN ) |
| 39 |
38
|
nnzd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) e. ZZ ) |
| 40 |
37 34
|
nnexpcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) e. NN ) |
| 41 |
40
|
nnzd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) e. ZZ ) |
| 42 |
23 41
|
zmulcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. ( P ^ T ) ) e. ZZ ) |
| 43 |
37
|
nncnd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. CC ) |
| 44 |
43 34 28
|
expaddd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) = ( ( P ^ S ) x. ( P ^ T ) ) ) |
| 45 |
27
|
simprd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) || M ) |
| 46 |
37 28
|
nnexpcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. NN ) |
| 47 |
46
|
nnzd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. ZZ ) |
| 48 |
|
dvdsmulc |
|- ( ( ( P ^ S ) e. ZZ /\ M e. ZZ /\ ( P ^ T ) e. ZZ ) -> ( ( P ^ S ) || M -> ( ( P ^ S ) x. ( P ^ T ) ) || ( M x. ( P ^ T ) ) ) ) |
| 49 |
47 23 41 48
|
syl3anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) || M -> ( ( P ^ S ) x. ( P ^ T ) ) || ( M x. ( P ^ T ) ) ) ) |
| 50 |
45 49
|
mpd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) x. ( P ^ T ) ) || ( M x. ( P ^ T ) ) ) |
| 51 |
44 50
|
eqbrtrd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) || ( M x. ( P ^ T ) ) ) |
| 52 |
33
|
simprd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) || N ) |
| 53 |
|
dvdscmul |
|- ( ( ( P ^ T ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( P ^ T ) || N -> ( M x. ( P ^ T ) ) || ( M x. N ) ) ) |
| 54 |
41 29 23 53
|
syl3anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ T ) || N -> ( M x. ( P ^ T ) ) || ( M x. N ) ) ) |
| 55 |
52 54
|
mpd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. ( P ^ T ) ) || ( M x. N ) ) |
| 56 |
39 42 8 51 55
|
dvdstrd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) || ( M x. N ) ) |
| 57 |
22 35 56
|
elrabd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) e. { x e. NN0 | ( P ^ x ) || ( M x. N ) } ) |
| 58 |
|
oveq2 |
|- ( x = n -> ( P ^ x ) = ( P ^ n ) ) |
| 59 |
58
|
breq1d |
|- ( x = n -> ( ( P ^ x ) || ( M x. N ) <-> ( P ^ n ) || ( M x. N ) ) ) |
| 60 |
59
|
cbvrabv |
|- { x e. NN0 | ( P ^ x ) || ( M x. N ) } = { n e. NN0 | ( P ^ n ) || ( M x. N ) } |
| 61 |
57 60
|
eleqtrdi |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } ) |
| 62 |
|
suprzub |
|- ( ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } C_ ZZ /\ E. x e. ZZ A. y e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } y <_ x /\ ( S + T ) e. { n e. NN0 | ( P ^ n ) || ( M x. N ) } ) -> ( S + T ) <_ sup ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } , RR , < ) ) |
| 63 |
19 20 61 62
|
syl3anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) <_ sup ( { n e. NN0 | ( P ^ n ) || ( M x. N ) } , RR , < ) ) |
| 64 |
63 3
|
breqtrrdi |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) <_ U ) |
| 65 |
25 1
|
pcprendvds2 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> -. P || ( M / ( P ^ S ) ) ) |
| 66 |
5 23 24 65
|
syl12anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( M / ( P ^ S ) ) ) |
| 67 |
31 2
|
pcprendvds2 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ T ) ) ) |
| 68 |
5 29 30 67
|
syl12anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ T ) ) ) |
| 69 |
|
ioran |
|- ( -. ( P || ( M / ( P ^ S ) ) \/ P || ( N / ( P ^ T ) ) ) <-> ( -. P || ( M / ( P ^ S ) ) /\ -. P || ( N / ( P ^ T ) ) ) ) |
| 70 |
66 68 69
|
sylanbrc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P || ( M / ( P ^ S ) ) \/ P || ( N / ( P ^ T ) ) ) ) |
| 71 |
|
simp1 |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. Prime ) |
| 72 |
46
|
nnne0d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) =/= 0 ) |
| 73 |
|
dvdsval2 |
|- ( ( ( P ^ S ) e. ZZ /\ ( P ^ S ) =/= 0 /\ M e. ZZ ) -> ( ( P ^ S ) || M <-> ( M / ( P ^ S ) ) e. ZZ ) ) |
| 74 |
47 72 23 73
|
syl3anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) || M <-> ( M / ( P ^ S ) ) e. ZZ ) ) |
| 75 |
45 74
|
mpbid |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M / ( P ^ S ) ) e. ZZ ) |
| 76 |
40
|
nnne0d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) =/= 0 ) |
| 77 |
|
dvdsval2 |
|- ( ( ( P ^ T ) e. ZZ /\ ( P ^ T ) =/= 0 /\ N e. ZZ ) -> ( ( P ^ T ) || N <-> ( N / ( P ^ T ) ) e. ZZ ) ) |
| 78 |
41 76 29 77
|
syl3anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ T ) || N <-> ( N / ( P ^ T ) ) e. ZZ ) ) |
| 79 |
52 78
|
mpbid |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / ( P ^ T ) ) e. ZZ ) |
| 80 |
|
euclemma |
|- ( ( P e. Prime /\ ( M / ( P ^ S ) ) e. ZZ /\ ( N / ( P ^ T ) ) e. ZZ ) -> ( P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) <-> ( P || ( M / ( P ^ S ) ) \/ P || ( N / ( P ^ T ) ) ) ) ) |
| 81 |
71 75 79 80
|
syl3anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) <-> ( P || ( M / ( P ^ S ) ) \/ P || ( N / ( P ^ T ) ) ) ) ) |
| 82 |
70 81
|
mtbird |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) |
| 83 |
16 3
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) ) -> ( U e. NN0 /\ ( P ^ U ) || ( M x. N ) ) ) |
| 84 |
5 8 15 83
|
syl12anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( U e. NN0 /\ ( P ^ U ) || ( M x. N ) ) ) |
| 85 |
84
|
simpld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> U e. NN0 ) |
| 86 |
|
nn0ltp1le |
|- ( ( ( S + T ) e. NN0 /\ U e. NN0 ) -> ( ( S + T ) < U <-> ( ( S + T ) + 1 ) <_ U ) ) |
| 87 |
35 85 86
|
syl2anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) < U <-> ( ( S + T ) + 1 ) <_ U ) ) |
| 88 |
37
|
nnzd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. ZZ ) |
| 89 |
|
peano2nn0 |
|- ( ( S + T ) e. NN0 -> ( ( S + T ) + 1 ) e. NN0 ) |
| 90 |
35 89
|
syl |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) + 1 ) e. NN0 ) |
| 91 |
|
dvdsexp |
|- ( ( P e. ZZ /\ ( ( S + T ) + 1 ) e. NN0 /\ U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) ) |
| 92 |
91
|
3expia |
|- ( ( P e. ZZ /\ ( ( S + T ) + 1 ) e. NN0 ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) ) ) |
| 93 |
88 90 92
|
syl2anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) ) ) |
| 94 |
84
|
simprd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ U ) || ( M x. N ) ) |
| 95 |
37 90
|
nnexpcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) e. NN ) |
| 96 |
95
|
nnzd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) e. ZZ ) |
| 97 |
37 85
|
nnexpcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ U ) e. NN ) |
| 98 |
97
|
nnzd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ U ) e. ZZ ) |
| 99 |
|
dvdstr |
|- ( ( ( P ^ ( ( S + T ) + 1 ) ) e. ZZ /\ ( P ^ U ) e. ZZ /\ ( M x. N ) e. ZZ ) -> ( ( ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) /\ ( P ^ U ) || ( M x. N ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) ) ) |
| 100 |
96 98 8 99
|
syl3anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) /\ ( P ^ U ) || ( M x. N ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) ) ) |
| 101 |
94 100
|
mpan2d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( ( S + T ) + 1 ) ) || ( P ^ U ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) ) ) |
| 102 |
93 101
|
syld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) ) ) |
| 103 |
90
|
nn0zd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) + 1 ) e. ZZ ) |
| 104 |
85
|
nn0zd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> U e. ZZ ) |
| 105 |
|
eluz |
|- ( ( ( ( S + T ) + 1 ) e. ZZ /\ U e. ZZ ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) <-> ( ( S + T ) + 1 ) <_ U ) ) |
| 106 |
103 104 105
|
syl2anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( U e. ( ZZ>= ` ( ( S + T ) + 1 ) ) <-> ( ( S + T ) + 1 ) <_ U ) ) |
| 107 |
43 35
|
expp1d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( ( S + T ) + 1 ) ) = ( ( P ^ ( S + T ) ) x. P ) ) |
| 108 |
23
|
zcnd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> M e. CC ) |
| 109 |
29
|
zcnd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. CC ) |
| 110 |
108 109
|
mulcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) e. CC ) |
| 111 |
38
|
nncnd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) e. CC ) |
| 112 |
38
|
nnne0d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + T ) ) =/= 0 ) |
| 113 |
110 111 112
|
divcan2d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( S + T ) ) x. ( ( M x. N ) / ( P ^ ( S + T ) ) ) ) = ( M x. N ) ) |
| 114 |
44
|
oveq2d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( M x. N ) / ( P ^ ( S + T ) ) ) = ( ( M x. N ) / ( ( P ^ S ) x. ( P ^ T ) ) ) ) |
| 115 |
46
|
nncnd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. CC ) |
| 116 |
40
|
nncnd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ T ) e. CC ) |
| 117 |
108 115 109 116 72 76
|
divmuldivd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) = ( ( M x. N ) / ( ( P ^ S ) x. ( P ^ T ) ) ) ) |
| 118 |
114 117
|
eqtr4d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( M x. N ) / ( P ^ ( S + T ) ) ) = ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) |
| 119 |
118
|
oveq2d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( S + T ) ) x. ( ( M x. N ) / ( P ^ ( S + T ) ) ) ) = ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 120 |
113 119
|
eqtr3d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M x. N ) = ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 121 |
107 120
|
breq12d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) <-> ( ( P ^ ( S + T ) ) x. P ) || ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) ) |
| 122 |
75 79
|
zmulcld |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) e. ZZ ) |
| 123 |
|
dvdscmulr |
|- ( ( P e. ZZ /\ ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) e. ZZ /\ ( ( P ^ ( S + T ) ) e. ZZ /\ ( P ^ ( S + T ) ) =/= 0 ) ) -> ( ( ( P ^ ( S + T ) ) x. P ) || ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) <-> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 124 |
88 122 39 112 123
|
syl112anc |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( P ^ ( S + T ) ) x. P ) || ( ( P ^ ( S + T ) ) x. ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) <-> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 125 |
121 124
|
bitrd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( ( S + T ) + 1 ) ) || ( M x. N ) <-> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 126 |
102 106 125
|
3imtr3d |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( S + T ) + 1 ) <_ U -> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 127 |
87 126
|
sylbid |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) < U -> P || ( ( M / ( P ^ S ) ) x. ( N / ( P ^ T ) ) ) ) ) |
| 128 |
82 127
|
mtod |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( S + T ) < U ) |
| 129 |
35
|
nn0red |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) e. RR ) |
| 130 |
85
|
nn0red |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> U e. RR ) |
| 131 |
129 130
|
eqleltd |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( S + T ) = U <-> ( ( S + T ) <_ U /\ -. ( S + T ) < U ) ) ) |
| 132 |
64 128 131
|
mpbir2and |
|- ( ( P e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S + T ) = U ) |