Step |
Hyp |
Ref |
Expression |
1 |
|
pclem.1 |
|- A = { n e. NN0 | ( P ^ n ) || N } |
2 |
|
pclem.2 |
|- S = sup ( A , RR , < ) |
3 |
1 2
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
4 |
3
|
simpld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
5 |
|
nn0re |
|- ( S e. NN0 -> S e. RR ) |
6 |
|
ltp1 |
|- ( S e. RR -> S < ( S + 1 ) ) |
7 |
|
peano2re |
|- ( S e. RR -> ( S + 1 ) e. RR ) |
8 |
|
ltnle |
|- ( ( S e. RR /\ ( S + 1 ) e. RR ) -> ( S < ( S + 1 ) <-> -. ( S + 1 ) <_ S ) ) |
9 |
7 8
|
mpdan |
|- ( S e. RR -> ( S < ( S + 1 ) <-> -. ( S + 1 ) <_ S ) ) |
10 |
6 9
|
mpbid |
|- ( S e. RR -> -. ( S + 1 ) <_ S ) |
11 |
4 5 10
|
3syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( S + 1 ) <_ S ) |
12 |
1
|
pclem |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) ) |
13 |
|
peano2nn0 |
|- ( S e. NN0 -> ( S + 1 ) e. NN0 ) |
14 |
|
oveq2 |
|- ( x = ( S + 1 ) -> ( P ^ x ) = ( P ^ ( S + 1 ) ) ) |
15 |
14
|
breq1d |
|- ( x = ( S + 1 ) -> ( ( P ^ x ) || N <-> ( P ^ ( S + 1 ) ) || N ) ) |
16 |
|
oveq2 |
|- ( n = x -> ( P ^ n ) = ( P ^ x ) ) |
17 |
16
|
breq1d |
|- ( n = x -> ( ( P ^ n ) || N <-> ( P ^ x ) || N ) ) |
18 |
17
|
cbvrabv |
|- { n e. NN0 | ( P ^ n ) || N } = { x e. NN0 | ( P ^ x ) || N } |
19 |
1 18
|
eqtri |
|- A = { x e. NN0 | ( P ^ x ) || N } |
20 |
15 19
|
elrab2 |
|- ( ( S + 1 ) e. A <-> ( ( S + 1 ) e. NN0 /\ ( P ^ ( S + 1 ) ) || N ) ) |
21 |
20
|
simplbi2 |
|- ( ( S + 1 ) e. NN0 -> ( ( P ^ ( S + 1 ) ) || N -> ( S + 1 ) e. A ) ) |
22 |
4 13 21
|
3syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( S + 1 ) ) || N -> ( S + 1 ) e. A ) ) |
23 |
|
suprzub |
|- ( ( A C_ ZZ /\ E. x e. ZZ A. y e. A y <_ x /\ ( S + 1 ) e. A ) -> ( S + 1 ) <_ sup ( A , RR , < ) ) |
24 |
23 2
|
breqtrrdi |
|- ( ( A C_ ZZ /\ E. x e. ZZ A. y e. A y <_ x /\ ( S + 1 ) e. A ) -> ( S + 1 ) <_ S ) |
25 |
24
|
3expia |
|- ( ( A C_ ZZ /\ E. x e. ZZ A. y e. A y <_ x ) -> ( ( S + 1 ) e. A -> ( S + 1 ) <_ S ) ) |
26 |
25
|
3adant2 |
|- ( ( A C_ ZZ /\ A =/= (/) /\ E. x e. ZZ A. y e. A y <_ x ) -> ( ( S + 1 ) e. A -> ( S + 1 ) <_ S ) ) |
27 |
12 22 26
|
sylsyld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ ( S + 1 ) ) || N -> ( S + 1 ) <_ S ) ) |
28 |
11 27
|
mtod |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( S + 1 ) ) || N ) |