| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pclem.1 |
|- A = { n e. NN0 | ( P ^ n ) || N } |
| 2 |
|
pclem.2 |
|- S = sup ( A , RR , < ) |
| 3 |
1 2
|
pcprendvds |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( S + 1 ) ) || N ) |
| 4 |
|
eluz2nn |
|- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
| 5 |
4
|
adantr |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. NN ) |
| 6 |
5
|
nnzd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. ZZ ) |
| 7 |
1 2
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 8 |
7
|
simprd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) || N ) |
| 9 |
7
|
simpld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 10 |
5 9
|
nnexpcld |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. NN ) |
| 11 |
10
|
nnzd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. ZZ ) |
| 12 |
10
|
nnne0d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) =/= 0 ) |
| 13 |
|
simprl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. ZZ ) |
| 14 |
|
dvdsval2 |
|- ( ( ( P ^ S ) e. ZZ /\ ( P ^ S ) =/= 0 /\ N e. ZZ ) -> ( ( P ^ S ) || N <-> ( N / ( P ^ S ) ) e. ZZ ) ) |
| 15 |
11 12 13 14
|
syl3anc |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) || N <-> ( N / ( P ^ S ) ) e. ZZ ) ) |
| 16 |
8 15
|
mpbid |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / ( P ^ S ) ) e. ZZ ) |
| 17 |
|
dvdscmul |
|- ( ( P e. ZZ /\ ( N / ( P ^ S ) ) e. ZZ /\ ( P ^ S ) e. ZZ ) -> ( P || ( N / ( P ^ S ) ) -> ( ( P ^ S ) x. P ) || ( ( P ^ S ) x. ( N / ( P ^ S ) ) ) ) ) |
| 18 |
6 16 11 17
|
syl3anc |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( N / ( P ^ S ) ) -> ( ( P ^ S ) x. P ) || ( ( P ^ S ) x. ( N / ( P ^ S ) ) ) ) ) |
| 19 |
5
|
nncnd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> P e. CC ) |
| 20 |
19 9
|
expp1d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( S + 1 ) ) = ( ( P ^ S ) x. P ) ) |
| 21 |
20
|
eqcomd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) x. P ) = ( P ^ ( S + 1 ) ) ) |
| 22 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 23 |
22
|
ad2antrl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. CC ) |
| 24 |
10
|
nncnd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ S ) e. CC ) |
| 25 |
23 24 12
|
divcan2d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P ^ S ) x. ( N / ( P ^ S ) ) ) = N ) |
| 26 |
21 25
|
breq12d |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( P ^ S ) x. P ) || ( ( P ^ S ) x. ( N / ( P ^ S ) ) ) <-> ( P ^ ( S + 1 ) ) || N ) ) |
| 27 |
18 26
|
sylibd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( N / ( P ^ S ) ) -> ( P ^ ( S + 1 ) ) || N ) ) |
| 28 |
3 27
|
mtod |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ S ) ) ) |