| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 2 | 1 | adantr |  |-  ( ( P e. Prime /\ A e. NN ) -> P e. ZZ ) | 
						
							| 3 |  | zexpcl |  |-  ( ( P e. ZZ /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) | 
						
							| 5 |  | iddvds |  |-  ( ( P ^ n ) e. ZZ -> ( P ^ n ) || ( P ^ n ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( P ^ n ) || ( P ^ n ) ) | 
						
							| 7 |  | breq1 |  |-  ( A = ( P ^ n ) -> ( A || ( P ^ n ) <-> ( P ^ n ) || ( P ^ n ) ) ) | 
						
							| 8 | 6 7 | syl5ibrcom |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> A || ( P ^ n ) ) ) | 
						
							| 9 | 8 | reximdva |  |-  ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) -> E. n e. NN0 A || ( P ^ n ) ) ) | 
						
							| 10 |  | pcprmpw2 |  |-  ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 11 | 9 10 | sylibd |  |-  ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) -> A = ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 12 |  | pccl |  |-  ( ( P e. Prime /\ A e. NN ) -> ( P pCnt A ) e. NN0 ) | 
						
							| 13 |  | oveq2 |  |-  ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) | 
						
							| 14 | 13 | rspceeqv |  |-  ( ( ( P pCnt A ) e. NN0 /\ A = ( P ^ ( P pCnt A ) ) ) -> E. n e. NN0 A = ( P ^ n ) ) | 
						
							| 15 | 14 | ex |  |-  ( ( P pCnt A ) e. NN0 -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A = ( P ^ n ) ) ) | 
						
							| 16 | 12 15 | syl |  |-  ( ( P e. Prime /\ A e. NN ) -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A = ( P ^ n ) ) ) | 
						
							| 17 | 11 16 | impbid |  |-  ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |