Step |
Hyp |
Ref |
Expression |
1 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
2 |
1
|
adantr |
|- ( ( P e. Prime /\ A e. NN ) -> P e. ZZ ) |
3 |
|
zexpcl |
|- ( ( P e. ZZ /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) |
4 |
2 3
|
sylan |
|- ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( P ^ n ) e. ZZ ) |
5 |
|
iddvds |
|- ( ( P ^ n ) e. ZZ -> ( P ^ n ) || ( P ^ n ) ) |
6 |
4 5
|
syl |
|- ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( P ^ n ) || ( P ^ n ) ) |
7 |
|
breq1 |
|- ( A = ( P ^ n ) -> ( A || ( P ^ n ) <-> ( P ^ n ) || ( P ^ n ) ) ) |
8 |
6 7
|
syl5ibrcom |
|- ( ( ( P e. Prime /\ A e. NN ) /\ n e. NN0 ) -> ( A = ( P ^ n ) -> A || ( P ^ n ) ) ) |
9 |
8
|
reximdva |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) -> E. n e. NN0 A || ( P ^ n ) ) ) |
10 |
|
pcprmpw2 |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |
11 |
9 10
|
sylibd |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) -> A = ( P ^ ( P pCnt A ) ) ) ) |
12 |
|
pccl |
|- ( ( P e. Prime /\ A e. NN ) -> ( P pCnt A ) e. NN0 ) |
13 |
|
oveq2 |
|- ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) |
14 |
13
|
rspceeqv |
|- ( ( ( P pCnt A ) e. NN0 /\ A = ( P ^ ( P pCnt A ) ) ) -> E. n e. NN0 A = ( P ^ n ) ) |
15 |
14
|
ex |
|- ( ( P pCnt A ) e. NN0 -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
16 |
12 15
|
syl |
|- ( ( P e. Prime /\ A e. NN ) -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A = ( P ^ n ) ) ) |
17 |
11 16
|
impbid |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A = ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |