Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. NN ) |
2 |
1
|
nnnn0d |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. NN0 ) |
3 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
4 |
3
|
ad2antrr |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> P e. NN ) |
5 |
|
pccl |
|- ( ( P e. Prime /\ A e. NN ) -> ( P pCnt A ) e. NN0 ) |
6 |
5
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. NN0 ) |
7 |
4 6
|
nnexpcld |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
8 |
7
|
nnnn0d |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. NN0 ) |
9 |
6
|
nn0red |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. RR ) |
10 |
9
|
leidd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) <_ ( P pCnt A ) ) |
11 |
|
simpll |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> P e. Prime ) |
12 |
6
|
nn0zd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. ZZ ) |
13 |
|
pcid |
|- ( ( P e. Prime /\ ( P pCnt A ) e. ZZ ) -> ( P pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt A ) ) |
14 |
11 12 13
|
syl2anc |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt A ) ) |
15 |
10 14
|
breqtrrd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
16 |
15
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( P pCnt A ) <_ ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
17 |
|
simpr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> p = P ) |
18 |
17
|
oveq1d |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt A ) = ( P pCnt A ) ) |
19 |
17
|
oveq1d |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt ( P ^ ( P pCnt A ) ) ) ) |
20 |
16 18 19
|
3brtr4d |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
21 |
|
simplrr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A || ( P ^ n ) ) |
22 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
23 |
22
|
adantl |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> p e. ZZ ) |
24 |
1
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A e. NN ) |
25 |
24
|
nnzd |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A e. ZZ ) |
26 |
|
simprl |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> n e. NN0 ) |
27 |
4 26
|
nnexpcld |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ n ) e. NN ) |
28 |
27
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( P ^ n ) e. NN ) |
29 |
28
|
nnzd |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( P ^ n ) e. ZZ ) |
30 |
|
dvdstr |
|- ( ( p e. ZZ /\ A e. ZZ /\ ( P ^ n ) e. ZZ ) -> ( ( p || A /\ A || ( P ^ n ) ) -> p || ( P ^ n ) ) ) |
31 |
23 25 29 30
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( ( p || A /\ A || ( P ^ n ) ) -> p || ( P ^ n ) ) ) |
32 |
21 31
|
mpan2d |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || A -> p || ( P ^ n ) ) ) |
33 |
|
simpr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> p e. Prime ) |
34 |
11
|
adantr |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> P e. Prime ) |
35 |
|
simplrl |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> n e. NN0 ) |
36 |
|
prmdvdsexpr |
|- ( ( p e. Prime /\ P e. Prime /\ n e. NN0 ) -> ( p || ( P ^ n ) -> p = P ) ) |
37 |
33 34 35 36
|
syl3anc |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || ( P ^ n ) -> p = P ) ) |
38 |
32 37
|
syld |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || A -> p = P ) ) |
39 |
38
|
necon3ad |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p =/= P -> -. p || A ) ) |
40 |
39
|
imp |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> -. p || A ) |
41 |
|
simplr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> p e. Prime ) |
42 |
1
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> A e. NN ) |
43 |
|
pceq0 |
|- ( ( p e. Prime /\ A e. NN ) -> ( ( p pCnt A ) = 0 <-> -. p || A ) ) |
44 |
41 42 43
|
syl2anc |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( ( p pCnt A ) = 0 <-> -. p || A ) ) |
45 |
40 44
|
mpbird |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt A ) = 0 ) |
46 |
7
|
ad2antrr |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
47 |
41 46
|
pccld |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt ( P ^ ( P pCnt A ) ) ) e. NN0 ) |
48 |
47
|
nn0ge0d |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> 0 <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
49 |
45 48
|
eqbrtrd |
|- ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
50 |
20 49
|
pm2.61dane |
|- ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
51 |
50
|
ralrimiva |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) |
52 |
1
|
nnzd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. ZZ ) |
53 |
7
|
nnzd |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
54 |
|
pc2dvds |
|- ( ( A e. ZZ /\ ( P ^ ( P pCnt A ) ) e. ZZ ) -> ( A || ( P ^ ( P pCnt A ) ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) ) |
55 |
52 53 54
|
syl2anc |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( A || ( P ^ ( P pCnt A ) ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) ) |
56 |
51 55
|
mpbird |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A || ( P ^ ( P pCnt A ) ) ) |
57 |
|
pcdvds |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || A ) |
58 |
57
|
adantr |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) || A ) |
59 |
|
dvdseq |
|- ( ( ( A e. NN0 /\ ( P ^ ( P pCnt A ) ) e. NN0 ) /\ ( A || ( P ^ ( P pCnt A ) ) /\ ( P ^ ( P pCnt A ) ) || A ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
60 |
2 8 56 58 59
|
syl22anc |
|- ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A = ( P ^ ( P pCnt A ) ) ) |
61 |
60
|
rexlimdvaa |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) -> A = ( P ^ ( P pCnt A ) ) ) ) |
62 |
3
|
adantr |
|- ( ( P e. Prime /\ A e. NN ) -> P e. NN ) |
63 |
62 5
|
nnexpcld |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
64 |
63
|
nnzd |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
65 |
|
iddvds |
|- ( ( P ^ ( P pCnt A ) ) e. ZZ -> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) |
66 |
64 65
|
syl |
|- ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) |
67 |
|
oveq2 |
|- ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) |
68 |
67
|
breq2d |
|- ( n = ( P pCnt A ) -> ( ( P ^ ( P pCnt A ) ) || ( P ^ n ) <-> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) ) |
69 |
68
|
rspcev |
|- ( ( ( P pCnt A ) e. NN0 /\ ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) -> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) |
70 |
5 66 69
|
syl2anc |
|- ( ( P e. Prime /\ A e. NN ) -> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) |
71 |
|
breq1 |
|- ( A = ( P ^ ( P pCnt A ) ) -> ( A || ( P ^ n ) <-> ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) ) |
72 |
71
|
rexbidv |
|- ( A = ( P ^ ( P pCnt A ) ) -> ( E. n e. NN0 A || ( P ^ n ) <-> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) ) |
73 |
70 72
|
syl5ibrcom |
|- ( ( P e. Prime /\ A e. NN ) -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A || ( P ^ n ) ) ) |
74 |
61 73
|
impbid |
|- ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |