| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. NN ) | 
						
							| 2 | 1 | nnnn0d |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. NN0 ) | 
						
							| 3 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 4 | 3 | ad2antrr |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> P e. NN ) | 
						
							| 5 |  | pccl |  |-  ( ( P e. Prime /\ A e. NN ) -> ( P pCnt A ) e. NN0 ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. NN0 ) | 
						
							| 7 | 4 6 | nnexpcld |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. NN ) | 
						
							| 8 | 7 | nnnn0d |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. NN0 ) | 
						
							| 9 | 6 | nn0red |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. RR ) | 
						
							| 10 | 9 | leidd |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) <_ ( P pCnt A ) ) | 
						
							| 11 |  | simpll |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> P e. Prime ) | 
						
							| 12 | 6 | nn0zd |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) e. ZZ ) | 
						
							| 13 |  | pcid |  |-  ( ( P e. Prime /\ ( P pCnt A ) e. ZZ ) -> ( P pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt A ) ) | 
						
							| 14 | 11 12 13 | syl2anc |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt A ) ) | 
						
							| 15 | 10 14 | breqtrrd |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P pCnt A ) <_ ( P pCnt ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 16 | 15 | ad2antrr |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( P pCnt A ) <_ ( P pCnt ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> p = P ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt A ) = ( P pCnt A ) ) | 
						
							| 19 | 17 | oveq1d |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt ( P ^ ( P pCnt A ) ) ) = ( P pCnt ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 20 | 16 18 19 | 3brtr4d |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p = P ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 21 |  | simplrr |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A || ( P ^ n ) ) | 
						
							| 22 |  | prmz |  |-  ( p e. Prime -> p e. ZZ ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> p e. ZZ ) | 
						
							| 24 | 1 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A e. NN ) | 
						
							| 25 | 24 | nnzd |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> A e. ZZ ) | 
						
							| 26 |  | simprl |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> n e. NN0 ) | 
						
							| 27 | 4 26 | nnexpcld |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ n ) e. NN ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( P ^ n ) e. NN ) | 
						
							| 29 | 28 | nnzd |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( P ^ n ) e. ZZ ) | 
						
							| 30 |  | dvdstr |  |-  ( ( p e. ZZ /\ A e. ZZ /\ ( P ^ n ) e. ZZ ) -> ( ( p || A /\ A || ( P ^ n ) ) -> p || ( P ^ n ) ) ) | 
						
							| 31 | 23 25 29 30 | syl3anc |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( ( p || A /\ A || ( P ^ n ) ) -> p || ( P ^ n ) ) ) | 
						
							| 32 | 21 31 | mpan2d |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || A -> p || ( P ^ n ) ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> p e. Prime ) | 
						
							| 34 | 11 | adantr |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> P e. Prime ) | 
						
							| 35 |  | simplrl |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> n e. NN0 ) | 
						
							| 36 |  | prmdvdsexpr |  |-  ( ( p e. Prime /\ P e. Prime /\ n e. NN0 ) -> ( p || ( P ^ n ) -> p = P ) ) | 
						
							| 37 | 33 34 35 36 | syl3anc |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || ( P ^ n ) -> p = P ) ) | 
						
							| 38 | 32 37 | syld |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p || A -> p = P ) ) | 
						
							| 39 | 38 | necon3ad |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p =/= P -> -. p || A ) ) | 
						
							| 40 | 39 | imp |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> -. p || A ) | 
						
							| 41 |  | simplr |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> p e. Prime ) | 
						
							| 42 | 1 | ad2antrr |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> A e. NN ) | 
						
							| 43 |  | pceq0 |  |-  ( ( p e. Prime /\ A e. NN ) -> ( ( p pCnt A ) = 0 <-> -. p || A ) ) | 
						
							| 44 | 41 42 43 | syl2anc |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( ( p pCnt A ) = 0 <-> -. p || A ) ) | 
						
							| 45 | 40 44 | mpbird |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt A ) = 0 ) | 
						
							| 46 | 7 | ad2antrr |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( P ^ ( P pCnt A ) ) e. NN ) | 
						
							| 47 | 41 46 | pccld |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt ( P ^ ( P pCnt A ) ) ) e. NN0 ) | 
						
							| 48 | 47 | nn0ge0d |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> 0 <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 49 | 45 48 | eqbrtrd |  |-  ( ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) /\ p =/= P ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 50 | 20 49 | pm2.61dane |  |-  ( ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) /\ p e. Prime ) -> ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 51 | 50 | ralrimiva |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 52 | 1 | nnzd |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A e. ZZ ) | 
						
							| 53 | 7 | nnzd |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) | 
						
							| 54 |  | pc2dvds |  |-  ( ( A e. ZZ /\ ( P ^ ( P pCnt A ) ) e. ZZ ) -> ( A || ( P ^ ( P pCnt A ) ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 55 | 52 53 54 | syl2anc |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( A || ( P ^ ( P pCnt A ) ) <-> A. p e. Prime ( p pCnt A ) <_ ( p pCnt ( P ^ ( P pCnt A ) ) ) ) ) | 
						
							| 56 | 51 55 | mpbird |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A || ( P ^ ( P pCnt A ) ) ) | 
						
							| 57 |  | pcdvds |  |-  ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || A ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> ( P ^ ( P pCnt A ) ) || A ) | 
						
							| 59 |  | dvdseq |  |-  ( ( ( A e. NN0 /\ ( P ^ ( P pCnt A ) ) e. NN0 ) /\ ( A || ( P ^ ( P pCnt A ) ) /\ ( P ^ ( P pCnt A ) ) || A ) ) -> A = ( P ^ ( P pCnt A ) ) ) | 
						
							| 60 | 2 8 56 58 59 | syl22anc |  |-  ( ( ( P e. Prime /\ A e. NN ) /\ ( n e. NN0 /\ A || ( P ^ n ) ) ) -> A = ( P ^ ( P pCnt A ) ) ) | 
						
							| 61 | 60 | rexlimdvaa |  |-  ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) -> A = ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 62 | 3 | adantr |  |-  ( ( P e. Prime /\ A e. NN ) -> P e. NN ) | 
						
							| 63 | 62 5 | nnexpcld |  |-  ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) e. NN ) | 
						
							| 64 | 63 | nnzd |  |-  ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) | 
						
							| 65 |  | iddvds |  |-  ( ( P ^ ( P pCnt A ) ) e. ZZ -> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) | 
						
							| 66 | 64 65 | syl |  |-  ( ( P e. Prime /\ A e. NN ) -> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) | 
						
							| 67 |  | oveq2 |  |-  ( n = ( P pCnt A ) -> ( P ^ n ) = ( P ^ ( P pCnt A ) ) ) | 
						
							| 68 | 67 | breq2d |  |-  ( n = ( P pCnt A ) -> ( ( P ^ ( P pCnt A ) ) || ( P ^ n ) <-> ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) ) | 
						
							| 69 | 68 | rspcev |  |-  ( ( ( P pCnt A ) e. NN0 /\ ( P ^ ( P pCnt A ) ) || ( P ^ ( P pCnt A ) ) ) -> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) | 
						
							| 70 | 5 66 69 | syl2anc |  |-  ( ( P e. Prime /\ A e. NN ) -> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) | 
						
							| 71 |  | breq1 |  |-  ( A = ( P ^ ( P pCnt A ) ) -> ( A || ( P ^ n ) <-> ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) ) | 
						
							| 72 | 71 | rexbidv |  |-  ( A = ( P ^ ( P pCnt A ) ) -> ( E. n e. NN0 A || ( P ^ n ) <-> E. n e. NN0 ( P ^ ( P pCnt A ) ) || ( P ^ n ) ) ) | 
						
							| 73 | 70 72 | syl5ibrcom |  |-  ( ( P e. Prime /\ A e. NN ) -> ( A = ( P ^ ( P pCnt A ) ) -> E. n e. NN0 A || ( P ^ n ) ) ) | 
						
							| 74 | 61 73 | impbid |  |-  ( ( P e. Prime /\ A e. NN ) -> ( E. n e. NN0 A || ( P ^ n ) <-> A = ( P ^ ( P pCnt A ) ) ) ) |