Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> N e. QQ ) |
2 |
|
elq |
|- ( N e. QQ <-> E. x e. ZZ E. y e. NN N = ( x / y ) ) |
3 |
1 2
|
sylib |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E. x e. ZZ E. y e. NN N = ( x / y ) ) |
4 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
5 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
6 |
4 5
|
div0d |
|- ( y e. NN -> ( 0 / y ) = 0 ) |
7 |
6
|
ad2antll |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( 0 / y ) = 0 ) |
8 |
|
oveq1 |
|- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
9 |
8
|
eqeq1d |
|- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
10 |
7 9
|
syl5ibrcom |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( x = 0 -> ( x / y ) = 0 ) ) |
11 |
10
|
necon3d |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) ) |
12 |
|
an32 |
|- ( ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) <-> ( ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) ) |
13 |
|
pcdiv |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
14 |
|
pczcl |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 ) |
15 |
14
|
nn0zd |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. ZZ ) |
16 |
15
|
3adant3 |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt x ) e. ZZ ) |
17 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
18 |
17 5
|
jca |
|- ( y e. NN -> ( y e. ZZ /\ y =/= 0 ) ) |
19 |
|
pczcl |
|- ( ( P e. Prime /\ ( y e. ZZ /\ y =/= 0 ) ) -> ( P pCnt y ) e. NN0 ) |
20 |
19
|
nn0zd |
|- ( ( P e. Prime /\ ( y e. ZZ /\ y =/= 0 ) ) -> ( P pCnt y ) e. ZZ ) |
21 |
18 20
|
sylan2 |
|- ( ( P e. Prime /\ y e. NN ) -> ( P pCnt y ) e. ZZ ) |
22 |
21
|
3adant2 |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt y ) e. ZZ ) |
23 |
16 22
|
zsubcld |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( ( P pCnt x ) - ( P pCnt y ) ) e. ZZ ) |
24 |
13 23
|
eqeltrd |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) e. ZZ ) |
25 |
24
|
3expb |
|- ( ( P e. Prime /\ ( ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) ) -> ( P pCnt ( x / y ) ) e. ZZ ) |
26 |
12 25
|
sylan2b |
|- ( ( P e. Prime /\ ( ( x e. ZZ /\ y e. NN ) /\ x =/= 0 ) ) -> ( P pCnt ( x / y ) ) e. ZZ ) |
27 |
26
|
expr |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( x =/= 0 -> ( P pCnt ( x / y ) ) e. ZZ ) ) |
28 |
11 27
|
syld |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( ( x / y ) =/= 0 -> ( P pCnt ( x / y ) ) e. ZZ ) ) |
29 |
|
neeq1 |
|- ( N = ( x / y ) -> ( N =/= 0 <-> ( x / y ) =/= 0 ) ) |
30 |
|
oveq2 |
|- ( N = ( x / y ) -> ( P pCnt N ) = ( P pCnt ( x / y ) ) ) |
31 |
30
|
eleq1d |
|- ( N = ( x / y ) -> ( ( P pCnt N ) e. ZZ <-> ( P pCnt ( x / y ) ) e. ZZ ) ) |
32 |
29 31
|
imbi12d |
|- ( N = ( x / y ) -> ( ( N =/= 0 -> ( P pCnt N ) e. ZZ ) <-> ( ( x / y ) =/= 0 -> ( P pCnt ( x / y ) ) e. ZZ ) ) ) |
33 |
28 32
|
syl5ibrcom |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( N = ( x / y ) -> ( N =/= 0 -> ( P pCnt N ) e. ZZ ) ) ) |
34 |
33
|
com23 |
|- ( ( P e. Prime /\ ( x e. ZZ /\ y e. NN ) ) -> ( N =/= 0 -> ( N = ( x / y ) -> ( P pCnt N ) e. ZZ ) ) ) |
35 |
34
|
impancom |
|- ( ( P e. Prime /\ N =/= 0 ) -> ( ( x e. ZZ /\ y e. NN ) -> ( N = ( x / y ) -> ( P pCnt N ) e. ZZ ) ) ) |
36 |
35
|
adantrl |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( ( x e. ZZ /\ y e. NN ) -> ( N = ( x / y ) -> ( P pCnt N ) e. ZZ ) ) ) |
37 |
36
|
rexlimdvv |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( E. x e. ZZ E. y e. NN N = ( x / y ) -> ( P pCnt N ) e. ZZ ) ) |
38 |
3 37
|
mpd |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) e. ZZ ) |