Metamath Proof Explorer


Theorem pcqdiv

Description: Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015)

Ref Expression
Assertion pcqdiv
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) )

Proof

Step Hyp Ref Expression
1 simp2l
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A e. QQ )
2 qcn
 |-  ( A e. QQ -> A e. CC )
3 1 2 syl
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A e. CC )
4 simp3l
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B e. QQ )
5 qcn
 |-  ( B e. QQ -> B e. CC )
6 4 5 syl
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B e. CC )
7 simp3r
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B =/= 0 )
8 3 6 7 divcan1d
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A / B ) x. B ) = A )
9 8 oveq2d
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( P pCnt A ) )
10 simp1
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> P e. Prime )
11 qdivcl
 |-  ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) e. QQ )
12 1 4 7 11 syl3anc
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A / B ) e. QQ )
13 simp2r
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A =/= 0 )
14 3 6 13 7 divne0d
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A / B ) =/= 0 )
15 pcqmul
 |-  ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) )
16 10 12 14 4 7 15 syl122anc
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) )
17 9 16 eqtr3d
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt A ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) )
18 17 oveq1d
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( P pCnt A ) - ( P pCnt B ) ) = ( ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) - ( P pCnt B ) ) )
19 pcqcl
 |-  ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. ZZ )
20 10 12 14 19 syl12anc
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. ZZ )
21 20 zcnd
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. CC )
22 pcqcl
 |-  ( ( P e. Prime /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ )
23 22 3adant2
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ )
24 23 zcnd
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. CC )
25 21 24 pncand
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) - ( P pCnt B ) ) = ( P pCnt ( A / B ) ) )
26 18 25 eqtr2d
 |-  ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) )