| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2l |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A e. QQ ) |
| 2 |
|
qcn |
|- ( A e. QQ -> A e. CC ) |
| 3 |
1 2
|
syl |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A e. CC ) |
| 4 |
|
simp3l |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B e. QQ ) |
| 5 |
|
qcn |
|- ( B e. QQ -> B e. CC ) |
| 6 |
4 5
|
syl |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B e. CC ) |
| 7 |
|
simp3r |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B =/= 0 ) |
| 8 |
3 6 7
|
divcan1d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A / B ) x. B ) = A ) |
| 9 |
8
|
oveq2d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( P pCnt A ) ) |
| 10 |
|
simp1 |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> P e. Prime ) |
| 11 |
|
qdivcl |
|- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) e. QQ ) |
| 12 |
1 4 7 11
|
syl3anc |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A / B ) e. QQ ) |
| 13 |
|
simp2r |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A =/= 0 ) |
| 14 |
3 6 13 7
|
divne0d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A / B ) =/= 0 ) |
| 15 |
|
pcqmul |
|- ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) ) |
| 16 |
10 12 14 4 7 15
|
syl122anc |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) ) |
| 17 |
9 16
|
eqtr3d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt A ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) ) |
| 18 |
17
|
oveq1d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( P pCnt A ) - ( P pCnt B ) ) = ( ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) - ( P pCnt B ) ) ) |
| 19 |
|
pcqcl |
|- ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. ZZ ) |
| 20 |
10 12 14 19
|
syl12anc |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. ZZ ) |
| 21 |
20
|
zcnd |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. CC ) |
| 22 |
|
pcqcl |
|- ( ( P e. Prime /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ ) |
| 23 |
22
|
3adant2 |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ ) |
| 24 |
23
|
zcnd |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. CC ) |
| 25 |
21 24
|
pncand |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) - ( P pCnt B ) ) = ( P pCnt ( A / B ) ) ) |
| 26 |
18 25
|
eqtr2d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) |