| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2l |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A e. QQ ) |
| 2 |
|
elq |
|- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| 3 |
1 2
|
sylib |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| 4 |
|
simp3l |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B e. QQ ) |
| 5 |
|
elq |
|- ( B e. QQ <-> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
| 6 |
4 5
|
sylib |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
| 7 |
|
reeanv |
|- ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) <-> ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) ) |
| 8 |
|
reeanv |
|- ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) <-> ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) ) |
| 9 |
|
simp2r |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A =/= 0 ) |
| 10 |
|
simp3r |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B =/= 0 ) |
| 11 |
9 10
|
jca |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A =/= 0 /\ B =/= 0 ) ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( A =/= 0 /\ B =/= 0 ) ) |
| 13 |
|
simp1 |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> P e. Prime ) |
| 14 |
|
simprl |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> y e. NN ) |
| 15 |
14
|
nncnd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> y e. CC ) |
| 16 |
14
|
nnne0d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> y =/= 0 ) |
| 17 |
15 16
|
div0d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( 0 / y ) = 0 ) |
| 18 |
|
oveq1 |
|- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
| 19 |
18
|
eqeq1d |
|- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
| 20 |
17 19
|
syl5ibrcom |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( x = 0 -> ( x / y ) = 0 ) ) |
| 21 |
20
|
necon3d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) ) |
| 22 |
|
simprr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> w e. NN ) |
| 23 |
22
|
nncnd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> w e. CC ) |
| 24 |
22
|
nnne0d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> w =/= 0 ) |
| 25 |
23 24
|
div0d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( 0 / w ) = 0 ) |
| 26 |
|
oveq1 |
|- ( z = 0 -> ( z / w ) = ( 0 / w ) ) |
| 27 |
26
|
eqeq1d |
|- ( z = 0 -> ( ( z / w ) = 0 <-> ( 0 / w ) = 0 ) ) |
| 28 |
25 27
|
syl5ibrcom |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( z = 0 -> ( z / w ) = 0 ) ) |
| 29 |
28
|
necon3d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( z / w ) =/= 0 -> z =/= 0 ) ) |
| 30 |
|
simpll |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> P e. Prime ) |
| 31 |
|
simplrl |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> x e. ZZ ) |
| 32 |
|
simplrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> z e. ZZ ) |
| 33 |
31 32
|
zmulcld |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( x x. z ) e. ZZ ) |
| 34 |
31
|
zcnd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> x e. CC ) |
| 35 |
32
|
zcnd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> z e. CC ) |
| 36 |
|
simprrl |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> x =/= 0 ) |
| 37 |
|
simprrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> z =/= 0 ) |
| 38 |
34 35 36 37
|
mulne0d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( x x. z ) =/= 0 ) |
| 39 |
14
|
adantrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> y e. NN ) |
| 40 |
22
|
adantrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> w e. NN ) |
| 41 |
39 40
|
nnmulcld |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( y x. w ) e. NN ) |
| 42 |
|
pcdiv |
|- ( ( P e. Prime /\ ( ( x x. z ) e. ZZ /\ ( x x. z ) =/= 0 ) /\ ( y x. w ) e. NN ) -> ( P pCnt ( ( x x. z ) / ( y x. w ) ) ) = ( ( P pCnt ( x x. z ) ) - ( P pCnt ( y x. w ) ) ) ) |
| 43 |
30 33 38 41 42
|
syl121anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( ( x x. z ) / ( y x. w ) ) ) = ( ( P pCnt ( x x. z ) ) - ( P pCnt ( y x. w ) ) ) ) |
| 44 |
|
pcmul |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt ( x x. z ) ) = ( ( P pCnt x ) + ( P pCnt z ) ) ) |
| 45 |
30 31 36 32 37 44
|
syl122anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( x x. z ) ) = ( ( P pCnt x ) + ( P pCnt z ) ) ) |
| 46 |
39
|
nnzd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> y e. ZZ ) |
| 47 |
16
|
adantrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> y =/= 0 ) |
| 48 |
40
|
nnzd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> w e. ZZ ) |
| 49 |
24
|
adantrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> w =/= 0 ) |
| 50 |
|
pcmul |
|- ( ( P e. Prime /\ ( y e. ZZ /\ y =/= 0 ) /\ ( w e. ZZ /\ w =/= 0 ) ) -> ( P pCnt ( y x. w ) ) = ( ( P pCnt y ) + ( P pCnt w ) ) ) |
| 51 |
30 46 47 48 49 50
|
syl122anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( y x. w ) ) = ( ( P pCnt y ) + ( P pCnt w ) ) ) |
| 52 |
45 51
|
oveq12d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( ( P pCnt ( x x. z ) ) - ( P pCnt ( y x. w ) ) ) = ( ( ( P pCnt x ) + ( P pCnt z ) ) - ( ( P pCnt y ) + ( P pCnt w ) ) ) ) |
| 53 |
|
pczcl |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 ) |
| 54 |
30 31 36 53
|
syl12anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt x ) e. NN0 ) |
| 55 |
54
|
nn0cnd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt x ) e. CC ) |
| 56 |
|
pczcl |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt z ) e. NN0 ) |
| 57 |
30 32 37 56
|
syl12anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt z ) e. NN0 ) |
| 58 |
57
|
nn0cnd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt z ) e. CC ) |
| 59 |
30 39
|
pccld |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt y ) e. NN0 ) |
| 60 |
59
|
nn0cnd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt y ) e. CC ) |
| 61 |
30 40
|
pccld |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt w ) e. NN0 ) |
| 62 |
61
|
nn0cnd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt w ) e. CC ) |
| 63 |
55 58 60 62
|
addsub4d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( ( ( P pCnt x ) + ( P pCnt z ) ) - ( ( P pCnt y ) + ( P pCnt w ) ) ) = ( ( ( P pCnt x ) - ( P pCnt y ) ) + ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
| 64 |
43 52 63
|
3eqtrd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( ( x x. z ) / ( y x. w ) ) ) = ( ( ( P pCnt x ) - ( P pCnt y ) ) + ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
| 65 |
15
|
adantrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> y e. CC ) |
| 66 |
23
|
adantrr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> w e. CC ) |
| 67 |
34 65 35 66 47 49
|
divmuldivd |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( ( x / y ) x. ( z / w ) ) = ( ( x x. z ) / ( y x. w ) ) ) |
| 68 |
67
|
oveq2d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( P pCnt ( ( x x. z ) / ( y x. w ) ) ) ) |
| 69 |
|
pcdiv |
|- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
| 70 |
30 31 36 39 69
|
syl121anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
| 71 |
|
pcdiv |
|- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) /\ w e. NN ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
| 72 |
30 32 37 40 71
|
syl121anc |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
| 73 |
70 72
|
oveq12d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) = ( ( ( P pCnt x ) - ( P pCnt y ) ) + ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
| 74 |
64 68 73
|
3eqtr4d |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) |
| 75 |
74
|
expr |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( x =/= 0 /\ z =/= 0 ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) ) |
| 76 |
21 29 75
|
syl2and |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( ( x / y ) =/= 0 /\ ( z / w ) =/= 0 ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) ) |
| 77 |
|
neeq1 |
|- ( A = ( x / y ) -> ( A =/= 0 <-> ( x / y ) =/= 0 ) ) |
| 78 |
|
neeq1 |
|- ( B = ( z / w ) -> ( B =/= 0 <-> ( z / w ) =/= 0 ) ) |
| 79 |
77 78
|
bi2anan9 |
|- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( A =/= 0 /\ B =/= 0 ) <-> ( ( x / y ) =/= 0 /\ ( z / w ) =/= 0 ) ) ) |
| 80 |
|
oveq12 |
|- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( A x. B ) = ( ( x / y ) x. ( z / w ) ) ) |
| 81 |
80
|
oveq2d |
|- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( P pCnt ( ( x / y ) x. ( z / w ) ) ) ) |
| 82 |
|
oveq2 |
|- ( A = ( x / y ) -> ( P pCnt A ) = ( P pCnt ( x / y ) ) ) |
| 83 |
|
oveq2 |
|- ( B = ( z / w ) -> ( P pCnt B ) = ( P pCnt ( z / w ) ) ) |
| 84 |
82 83
|
oveqan12d |
|- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( P pCnt A ) + ( P pCnt B ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) |
| 85 |
81 84
|
eqeq12d |
|- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) <-> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) ) |
| 86 |
79 85
|
imbi12d |
|- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( ( A =/= 0 /\ B =/= 0 ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) <-> ( ( ( x / y ) =/= 0 /\ ( z / w ) =/= 0 ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) ) ) |
| 87 |
76 86
|
syl5ibrcom |
|- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( A =/= 0 /\ B =/= 0 ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) ) |
| 88 |
13 87
|
sylanl1 |
|- ( ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( A =/= 0 /\ B =/= 0 ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) ) |
| 89 |
12 88
|
mpid |
|- ( ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 90 |
89
|
rexlimdvva |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 91 |
8 90
|
biimtrrid |
|- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 92 |
91
|
rexlimdvva |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 93 |
7 92
|
biimtrrid |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 94 |
3 6 93
|
mp2and |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) |