Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
|- 1 e. ZZ |
2 |
|
zq |
|- ( 1 e. ZZ -> 1 e. QQ ) |
3 |
1 2
|
ax-mp |
|- 1 e. QQ |
4 |
|
ax-1ne0 |
|- 1 =/= 0 |
5 |
3 4
|
pm3.2i |
|- ( 1 e. QQ /\ 1 =/= 0 ) |
6 |
|
pcqdiv |
|- ( ( P e. Prime /\ ( 1 e. QQ /\ 1 =/= 0 ) /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = ( ( P pCnt 1 ) - ( P pCnt A ) ) ) |
7 |
5 6
|
mp3an2 |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = ( ( P pCnt 1 ) - ( P pCnt A ) ) ) |
8 |
|
pc1 |
|- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
9 |
8
|
adantr |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt 1 ) = 0 ) |
10 |
9
|
oveq1d |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( ( P pCnt 1 ) - ( P pCnt A ) ) = ( 0 - ( P pCnt A ) ) ) |
11 |
7 10
|
eqtrd |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = ( 0 - ( P pCnt A ) ) ) |
12 |
|
df-neg |
|- -u ( P pCnt A ) = ( 0 - ( P pCnt A ) ) |
13 |
11 12
|
eqtr4di |
|- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( P pCnt ( 1 / A ) ) = -u ( P pCnt A ) ) |