Step |
Hyp |
Ref |
Expression |
1 |
|
pcval.1 |
|- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
2 |
|
pcval.2 |
|- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
3 |
|
simpr |
|- ( ( p = P /\ r = N ) -> r = N ) |
4 |
3
|
eqeq1d |
|- ( ( p = P /\ r = N ) -> ( r = 0 <-> N = 0 ) ) |
5 |
|
eqeq1 |
|- ( r = N -> ( r = ( x / y ) <-> N = ( x / y ) ) ) |
6 |
|
oveq1 |
|- ( p = P -> ( p ^ n ) = ( P ^ n ) ) |
7 |
6
|
breq1d |
|- ( p = P -> ( ( p ^ n ) || x <-> ( P ^ n ) || x ) ) |
8 |
7
|
rabbidv |
|- ( p = P -> { n e. NN0 | ( p ^ n ) || x } = { n e. NN0 | ( P ^ n ) || x } ) |
9 |
8
|
supeq1d |
|- ( p = P -> sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) ) |
10 |
9 1
|
eqtr4di |
|- ( p = P -> sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) = S ) |
11 |
6
|
breq1d |
|- ( p = P -> ( ( p ^ n ) || y <-> ( P ^ n ) || y ) ) |
12 |
11
|
rabbidv |
|- ( p = P -> { n e. NN0 | ( p ^ n ) || y } = { n e. NN0 | ( P ^ n ) || y } ) |
13 |
12
|
supeq1d |
|- ( p = P -> sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) |
14 |
13 2
|
eqtr4di |
|- ( p = P -> sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) = T ) |
15 |
10 14
|
oveq12d |
|- ( p = P -> ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) = ( S - T ) ) |
16 |
15
|
eqeq2d |
|- ( p = P -> ( z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) <-> z = ( S - T ) ) ) |
17 |
5 16
|
bi2anan9r |
|- ( ( p = P /\ r = N ) -> ( ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) <-> ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
18 |
17
|
2rexbidv |
|- ( ( p = P /\ r = N ) -> ( E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) <-> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
19 |
18
|
iotabidv |
|- ( ( p = P /\ r = N ) -> ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
20 |
4 19
|
ifbieq2d |
|- ( ( p = P /\ r = N ) -> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) = if ( N = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) ) |
21 |
|
df-pc |
|- pCnt = ( p e. Prime , r e. QQ |-> if ( r = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( r = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( p ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( p ^ n ) || y } , RR , < ) ) ) ) ) ) |
22 |
|
pnfex |
|- +oo e. _V |
23 |
|
iotaex |
|- ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) e. _V |
24 |
22 23
|
ifex |
|- if ( N = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) e. _V |
25 |
20 21 24
|
ovmpoa |
|- ( ( P e. Prime /\ N e. QQ ) -> ( P pCnt N ) = if ( N = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) ) |
26 |
|
ifnefalse |
|- ( N =/= 0 -> if ( N = 0 , +oo , ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
27 |
25 26
|
sylan9eq |
|- ( ( ( P e. Prime /\ N e. QQ ) /\ N =/= 0 ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |
28 |
27
|
anasss |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( S - T ) ) ) ) |