Step |
Hyp |
Ref |
Expression |
1 |
|
pc0 |
|- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
2 |
|
pnfxr |
|- +oo e. RR* |
3 |
1 2
|
eqeltrdi |
|- ( P e. Prime -> ( P pCnt 0 ) e. RR* ) |
4 |
3
|
adantr |
|- ( ( P e. Prime /\ N e. QQ ) -> ( P pCnt 0 ) e. RR* ) |
5 |
|
oveq2 |
|- ( N = 0 -> ( P pCnt N ) = ( P pCnt 0 ) ) |
6 |
5
|
eleq1d |
|- ( N = 0 -> ( ( P pCnt N ) e. RR* <-> ( P pCnt 0 ) e. RR* ) ) |
7 |
4 6
|
syl5ibrcom |
|- ( ( P e. Prime /\ N e. QQ ) -> ( N = 0 -> ( P pCnt N ) e. RR* ) ) |
8 |
|
pcqcl |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) e. ZZ ) |
9 |
8
|
zred |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) e. RR ) |
10 |
9
|
rexrd |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) e. RR* ) |
11 |
10
|
expr |
|- ( ( P e. Prime /\ N e. QQ ) -> ( N =/= 0 -> ( P pCnt N ) e. RR* ) ) |
12 |
7 11
|
pm2.61dne |
|- ( ( P e. Prime /\ N e. QQ ) -> ( P pCnt N ) e. RR* ) |