| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pc0 |
|- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
| 2 |
|
pnf0xnn0 |
|- +oo e. NN0* |
| 3 |
1 2
|
eqeltrdi |
|- ( P e. Prime -> ( P pCnt 0 ) e. NN0* ) |
| 4 |
3
|
adantr |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P pCnt 0 ) e. NN0* ) |
| 5 |
|
oveq2 |
|- ( N = 0 -> ( P pCnt N ) = ( P pCnt 0 ) ) |
| 6 |
5
|
eleq1d |
|- ( N = 0 -> ( ( P pCnt N ) e. NN0* <-> ( P pCnt 0 ) e. NN0* ) ) |
| 7 |
4 6
|
syl5ibrcom |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( N = 0 -> ( P pCnt N ) e. NN0* ) ) |
| 8 |
|
pczcl |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0 ) |
| 9 |
8
|
nn0xnn0d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0* ) |
| 10 |
9
|
expr |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( N =/= 0 -> ( P pCnt N ) e. NN0* ) ) |
| 11 |
7 10
|
pm2.61dne |
|- ( ( P e. Prime /\ N e. ZZ ) -> ( P pCnt N ) e. NN0* ) |