Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- sup ( { x e. NN0 | ( P ^ x ) || N } , RR , < ) = sup ( { x e. NN0 | ( P ^ x ) || N } , RR , < ) |
2 |
1
|
pczpre |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = sup ( { x e. NN0 | ( P ^ x ) || N } , RR , < ) ) |
3 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
4 |
|
eqid |
|- { x e. NN0 | ( P ^ x ) || N } = { x e. NN0 | ( P ^ x ) || N } |
5 |
4 1
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( sup ( { x e. NN0 | ( P ^ x ) || N } , RR , < ) e. NN0 /\ ( P ^ sup ( { x e. NN0 | ( P ^ x ) || N } , RR , < ) ) || N ) ) |
6 |
3 5
|
sylan |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( sup ( { x e. NN0 | ( P ^ x ) || N } , RR , < ) e. NN0 /\ ( P ^ sup ( { x e. NN0 | ( P ^ x ) || N } , RR , < ) ) || N ) ) |
7 |
6
|
simpld |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> sup ( { x e. NN0 | ( P ^ x ) || N } , RR , < ) e. NN0 ) |
8 |
2 7
|
eqeltrd |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0 ) |