| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
| 2 |
1
|
pczpre |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) |
| 3 |
2
|
oveq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( P pCnt N ) ) = ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) |
| 4 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 5 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
| 6 |
5 1
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) e. NN0 /\ ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) || N ) ) |
| 7 |
6
|
simprd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) || N ) |
| 8 |
4 7
|
sylan |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) || N ) |
| 9 |
3 8
|
eqbrtrd |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( P pCnt N ) ) || N ) |