Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
2 |
1
|
pczpre |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) |
3 |
2
|
oveq1d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( P pCnt N ) + 1 ) = ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) + 1 ) ) |
4 |
3
|
oveq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) = ( P ^ ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) + 1 ) ) ) |
5 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
6 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
7 |
6 1
|
pcprendvds |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) + 1 ) ) || N ) |
8 |
5 7
|
sylan |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) + 1 ) ) || N ) |
9 |
4 8
|
eqnbrtrd |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |