| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmuz2 |  |-  ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) | 
						
							| 2 |  | eqid |  |-  { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } | 
						
							| 3 |  | eqid |  |-  sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) | 
						
							| 4 | 2 3 | pcprendvds2 |  |-  ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) | 
						
							| 5 | 1 4 | sylan |  |-  ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) | 
						
							| 6 | 3 | pczpre |  |-  ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( P pCnt N ) ) = ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / ( P ^ ( P pCnt N ) ) ) = ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) | 
						
							| 9 | 8 | breq2d |  |-  ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( N / ( P ^ ( P pCnt N ) ) ) <-> P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) ) | 
						
							| 10 | 5 9 | mtbird |  |-  ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) |