Step |
Hyp |
Ref |
Expression |
1 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
2 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
3 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
4 |
2 3
|
pcprendvds2 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
5 |
1 4
|
sylan |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
6 |
3
|
pczpre |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) |
7 |
6
|
oveq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( P pCnt N ) ) = ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) |
8 |
7
|
oveq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / ( P ^ ( P pCnt N ) ) ) = ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) |
9 |
8
|
breq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P || ( N / ( P ^ ( P pCnt N ) ) ) <-> P || ( N / ( P ^ sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) ) ) ) |
10 |
5 9
|
mtbird |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. P || ( N / ( P ^ ( P pCnt N ) ) ) ) |