| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pczpre.1 |
|- S = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) |
| 2 |
|
zq |
|- ( N e. ZZ -> N e. QQ ) |
| 3 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
| 4 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
| 5 |
3 4
|
pcval |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 6 |
2 5
|
sylanr1 |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 7 |
|
simprl |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. ZZ ) |
| 8 |
7
|
zcnd |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> N e. CC ) |
| 9 |
8
|
div1d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( N / 1 ) = N ) |
| 10 |
9
|
eqcomd |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> N = ( N / 1 ) ) |
| 11 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 12 |
|
eqid |
|- 1 = 1 |
| 13 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || 1 } = { n e. NN0 | ( P ^ n ) || 1 } |
| 14 |
|
eqid |
|- sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) |
| 15 |
13 14
|
pcpre1 |
|- ( ( P e. ( ZZ>= ` 2 ) /\ 1 = 1 ) -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 16 |
11 12 15
|
sylancl |
|- ( P e. Prime -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 17 |
16
|
adantr |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 18 |
17
|
oveq2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) = ( S - 0 ) ) |
| 19 |
|
eqid |
|- { n e. NN0 | ( P ^ n ) || N } = { n e. NN0 | ( P ^ n ) || N } |
| 20 |
19 1
|
pcprecl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 21 |
11 20
|
sylan |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || N ) ) |
| 22 |
21
|
simpld |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. NN0 ) |
| 23 |
22
|
nn0cnd |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> S e. CC ) |
| 24 |
23
|
subid1d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( S - 0 ) = S ) |
| 25 |
18 24
|
eqtr2d |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) |
| 26 |
|
1nn |
|- 1 e. NN |
| 27 |
|
oveq1 |
|- ( x = N -> ( x / y ) = ( N / y ) ) |
| 28 |
27
|
eqeq2d |
|- ( x = N -> ( N = ( x / y ) <-> N = ( N / y ) ) ) |
| 29 |
|
breq2 |
|- ( x = N -> ( ( P ^ n ) || x <-> ( P ^ n ) || N ) ) |
| 30 |
29
|
rabbidv |
|- ( x = N -> { n e. NN0 | ( P ^ n ) || x } = { n e. NN0 | ( P ^ n ) || N } ) |
| 31 |
30
|
supeq1d |
|- ( x = N -> sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) ) |
| 32 |
31 1
|
eqtr4di |
|- ( x = N -> sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = S ) |
| 33 |
32
|
oveq1d |
|- ( x = N -> ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) |
| 34 |
33
|
eqeq2d |
|- ( x = N -> ( S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> S = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 35 |
28 34
|
anbi12d |
|- ( x = N -> ( ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( N = ( N / y ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 36 |
|
oveq2 |
|- ( y = 1 -> ( N / y ) = ( N / 1 ) ) |
| 37 |
36
|
eqeq2d |
|- ( y = 1 -> ( N = ( N / y ) <-> N = ( N / 1 ) ) ) |
| 38 |
|
breq2 |
|- ( y = 1 -> ( ( P ^ n ) || y <-> ( P ^ n ) || 1 ) ) |
| 39 |
38
|
rabbidv |
|- ( y = 1 -> { n e. NN0 | ( P ^ n ) || y } = { n e. NN0 | ( P ^ n ) || 1 } ) |
| 40 |
39
|
supeq1d |
|- ( y = 1 -> sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) |
| 41 |
40
|
oveq2d |
|- ( y = 1 -> ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) |
| 42 |
41
|
eqeq2d |
|- ( y = 1 -> ( S = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) ) |
| 43 |
37 42
|
anbi12d |
|- ( y = 1 -> ( ( N = ( N / y ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( N = ( N / 1 ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) ) ) |
| 44 |
35 43
|
rspc2ev |
|- ( ( N e. ZZ /\ 1 e. NN /\ ( N = ( N / 1 ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) ) -> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 45 |
26 44
|
mp3an2 |
|- ( ( N e. ZZ /\ ( N = ( N / 1 ) /\ S = ( S - sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) ) ) -> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 46 |
7 10 25 45
|
syl12anc |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 47 |
|
ltso |
|- < Or RR |
| 48 |
47
|
supex |
|- sup ( { n e. NN0 | ( P ^ n ) || N } , RR , < ) e. _V |
| 49 |
1 48
|
eqeltri |
|- S e. _V |
| 50 |
3 4
|
pceu |
|- ( ( P e. Prime /\ ( N e. QQ /\ N =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 51 |
2 50
|
sylanr1 |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 52 |
|
eqeq1 |
|- ( z = S -> ( z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 53 |
52
|
anbi2d |
|- ( z = S -> ( ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 54 |
53
|
2rexbidv |
|- ( z = S -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 55 |
54
|
iota2 |
|- ( ( S e. _V /\ E! z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = S ) ) |
| 56 |
49 51 55
|
sylancr |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ S = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = S ) ) |
| 57 |
46 56
|
mpbid |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( iota z E. x e. ZZ E. y e. NN ( N = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = S ) |
| 58 |
6 57
|
eqtrd |
|- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) = S ) |