| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ... N ) ) -> K e. ( ZZ>= ` M ) ) |
| 2 |
|
eluzelz |
|- ( K e. ( ZZ>= ` M ) -> K e. ZZ ) |
| 3 |
|
elfzuz3 |
|- ( ( K + 1 ) e. ( M ... N ) -> N e. ( ZZ>= ` ( K + 1 ) ) ) |
| 4 |
|
peano2uzr |
|- ( ( K e. ZZ /\ N e. ( ZZ>= ` ( K + 1 ) ) ) -> N e. ( ZZ>= ` K ) ) |
| 5 |
2 3 4
|
syl2an |
|- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ... N ) ) -> N e. ( ZZ>= ` K ) ) |
| 6 |
|
elfzuzb |
|- ( K e. ( M ... N ) <-> ( K e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) ) |
| 7 |
1 5 6
|
sylanbrc |
|- ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ... N ) ) -> K e. ( M ... N ) ) |