Metamath Proof Explorer


Theorem peano2nnd

Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis nnred.1
|- ( ph -> A e. NN )
Assertion peano2nnd
|- ( ph -> ( A + 1 ) e. NN )

Proof

Step Hyp Ref Expression
1 nnred.1
 |-  ( ph -> A e. NN )
2 peano2nn
 |-  ( A e. NN -> ( A + 1 ) e. NN )
3 1 2 syl
 |-  ( ph -> ( A + 1 ) e. NN )