Metamath Proof Explorer


Theorem peano2re

Description: A theorem for reals analogous the second Peano postulate peano2nn . (Contributed by NM, 5-Jul-2005)

Ref Expression
Assertion peano2re
|- ( A e. RR -> ( A + 1 ) e. RR )

Proof

Step Hyp Ref Expression
1 1re
 |-  1 e. RR
2 readdcl
 |-  ( ( A e. RR /\ 1 e. RR ) -> ( A + 1 ) e. RR )
3 1 2 mpan2
 |-  ( A e. RR -> ( A + 1 ) e. RR )