| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzelcn |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. CC ) |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 4 |
1 2 3
|
sylancl |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 5 |
4
|
adantl |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 6 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 7 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` M ) ) |
| 8 |
6 7
|
syl |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` M ) ) |
| 9 |
5 8
|
eqeltrrd |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |