Metamath Proof Explorer


Theorem peano2uzr

Description: Reversed second Peano axiom for upper integers. (Contributed by NM, 2-Jan-2006)

Ref Expression
Assertion peano2uzr
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` M ) )

Proof

Step Hyp Ref Expression
1 eluzelcn
 |-  ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. CC )
2 ax-1cn
 |-  1 e. CC
3 npcan
 |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N )
4 1 2 3 sylancl
 |-  ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ( N - 1 ) + 1 ) = N )
5 4 adantl
 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N )
6 eluzp1m1
 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) )
7 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` M ) )
8 6 7 syl
 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` M ) )
9 5 8 eqeltrrd
 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N e. ( ZZ>= ` M ) )