| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) <-> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 2 |
|
simp-4r |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ a e. NN0 ) /\ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A e. RR ) |
| 3 |
|
oveq1 |
|- ( c = a -> ( c + ( ( sqrt ` D ) x. b ) ) = ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 4 |
3
|
eqeq2d |
|- ( c = a -> ( A = ( c + ( ( sqrt ` D ) x. b ) ) <-> A = ( a + ( ( sqrt ` D ) x. b ) ) ) ) |
| 5 |
|
oveq1 |
|- ( c = a -> ( c ^ 2 ) = ( a ^ 2 ) ) |
| 6 |
5
|
oveq1d |
|- ( c = a -> ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
| 7 |
6
|
eqeq1d |
|- ( c = a -> ( ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 8 |
4 7
|
anbi12d |
|- ( c = a -> ( ( A = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 9 |
8
|
rexbidv |
|- ( c = a -> ( E. b e. ZZ ( A = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 10 |
9
|
rspcev |
|- ( ( a e. NN0 /\ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> E. c e. NN0 E. b e. ZZ ( A = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 11 |
10
|
adantll |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ a e. NN0 ) /\ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> E. c e. NN0 E. b e. ZZ ( A = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 12 |
|
elpell14qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. RR /\ E. c e. NN0 E. b e. ZZ ( A = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 13 |
12
|
ad4antr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ a e. NN0 ) /\ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. RR /\ E. c e. NN0 E. b e. ZZ ( A = ( c + ( ( sqrt ` D ) x. b ) ) /\ ( ( c ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 14 |
2 11 13
|
mpbir2and |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ a e. NN0 ) /\ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A e. ( Pell14QR ` D ) ) |
| 15 |
14
|
orcd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ a e. NN0 ) /\ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) |
| 16 |
15
|
exp31 |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) -> ( a e. NN0 -> ( E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) ) ) |
| 17 |
|
simp-5r |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A e. RR ) |
| 18 |
17
|
renegcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u A e. RR ) |
| 19 |
|
simpllr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u a e. NN0 ) |
| 20 |
|
znegcl |
|- ( b e. ZZ -> -u b e. ZZ ) |
| 21 |
20
|
ad2antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u b e. ZZ ) |
| 22 |
|
simprl |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 23 |
22
|
negeqd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u A = -u ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 24 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
| 25 |
24
|
ad4antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> a e. CC ) |
| 26 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
| 27 |
26
|
nncnd |
|- ( D e. ( NN \ []NN ) -> D e. CC ) |
| 28 |
27
|
ad5antr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> D e. CC ) |
| 29 |
28
|
sqrtcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) e. CC ) |
| 30 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
| 31 |
30
|
ad2antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> b e. CC ) |
| 32 |
29 31
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) |
| 33 |
25 32
|
negdid |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u ( a + ( ( sqrt ` D ) x. b ) ) = ( -u a + -u ( ( sqrt ` D ) x. b ) ) ) |
| 34 |
|
mulneg2 |
|- ( ( ( sqrt ` D ) e. CC /\ b e. CC ) -> ( ( sqrt ` D ) x. -u b ) = -u ( ( sqrt ` D ) x. b ) ) |
| 35 |
34
|
eqcomd |
|- ( ( ( sqrt ` D ) e. CC /\ b e. CC ) -> -u ( ( sqrt ` D ) x. b ) = ( ( sqrt ` D ) x. -u b ) ) |
| 36 |
29 31 35
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u ( ( sqrt ` D ) x. b ) = ( ( sqrt ` D ) x. -u b ) ) |
| 37 |
36
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u a + -u ( ( sqrt ` D ) x. b ) ) = ( -u a + ( ( sqrt ` D ) x. -u b ) ) ) |
| 38 |
23 33 37
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u A = ( -u a + ( ( sqrt ` D ) x. -u b ) ) ) |
| 39 |
|
sqneg |
|- ( a e. CC -> ( -u a ^ 2 ) = ( a ^ 2 ) ) |
| 40 |
25 39
|
syl |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u a ^ 2 ) = ( a ^ 2 ) ) |
| 41 |
|
sqneg |
|- ( b e. CC -> ( -u b ^ 2 ) = ( b ^ 2 ) ) |
| 42 |
31 41
|
syl |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u b ^ 2 ) = ( b ^ 2 ) ) |
| 43 |
42
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( D x. ( -u b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
| 44 |
40 43
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( -u a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
| 45 |
|
simprr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
| 46 |
44 45
|
eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( -u a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) |
| 47 |
|
oveq1 |
|- ( c = -u a -> ( c + ( ( sqrt ` D ) x. d ) ) = ( -u a + ( ( sqrt ` D ) x. d ) ) ) |
| 48 |
47
|
eqeq2d |
|- ( c = -u a -> ( -u A = ( c + ( ( sqrt ` D ) x. d ) ) <-> -u A = ( -u a + ( ( sqrt ` D ) x. d ) ) ) ) |
| 49 |
|
oveq1 |
|- ( c = -u a -> ( c ^ 2 ) = ( -u a ^ 2 ) ) |
| 50 |
49
|
oveq1d |
|- ( c = -u a -> ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = ( ( -u a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) |
| 51 |
50
|
eqeq1d |
|- ( c = -u a -> ( ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 <-> ( ( -u a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) |
| 52 |
48 51
|
anbi12d |
|- ( c = -u a -> ( ( -u A = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) <-> ( -u A = ( -u a + ( ( sqrt ` D ) x. d ) ) /\ ( ( -u a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) |
| 53 |
|
oveq2 |
|- ( d = -u b -> ( ( sqrt ` D ) x. d ) = ( ( sqrt ` D ) x. -u b ) ) |
| 54 |
53
|
oveq2d |
|- ( d = -u b -> ( -u a + ( ( sqrt ` D ) x. d ) ) = ( -u a + ( ( sqrt ` D ) x. -u b ) ) ) |
| 55 |
54
|
eqeq2d |
|- ( d = -u b -> ( -u A = ( -u a + ( ( sqrt ` D ) x. d ) ) <-> -u A = ( -u a + ( ( sqrt ` D ) x. -u b ) ) ) ) |
| 56 |
|
oveq1 |
|- ( d = -u b -> ( d ^ 2 ) = ( -u b ^ 2 ) ) |
| 57 |
56
|
oveq2d |
|- ( d = -u b -> ( D x. ( d ^ 2 ) ) = ( D x. ( -u b ^ 2 ) ) ) |
| 58 |
57
|
oveq2d |
|- ( d = -u b -> ( ( -u a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = ( ( -u a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) ) |
| 59 |
58
|
eqeq1d |
|- ( d = -u b -> ( ( ( -u a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 <-> ( ( -u a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) |
| 60 |
55 59
|
anbi12d |
|- ( d = -u b -> ( ( -u A = ( -u a + ( ( sqrt ` D ) x. d ) ) /\ ( ( -u a ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) <-> ( -u A = ( -u a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( -u a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) ) |
| 61 |
52 60
|
rspc2ev |
|- ( ( -u a e. NN0 /\ -u b e. ZZ /\ ( -u A = ( -u a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( -u a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) -> E. c e. NN0 E. d e. ZZ ( -u A = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) |
| 62 |
19 21 38 46 61
|
syl112anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> E. c e. NN0 E. d e. ZZ ( -u A = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) |
| 63 |
|
elpell14qr |
|- ( D e. ( NN \ []NN ) -> ( -u A e. ( Pell14QR ` D ) <-> ( -u A e. RR /\ E. c e. NN0 E. d e. ZZ ( -u A = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
| 64 |
63
|
ad5antr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u A e. ( Pell14QR ` D ) <-> ( -u A e. RR /\ E. c e. NN0 E. d e. ZZ ( -u A = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
| 65 |
18 62 64
|
mpbir2and |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> -u A e. ( Pell14QR ` D ) ) |
| 66 |
65
|
olcd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) |
| 67 |
66
|
ex |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) /\ b e. ZZ ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) ) |
| 68 |
67
|
rexlimdva |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) /\ -u a e. NN0 ) -> ( E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) ) |
| 69 |
68
|
ex |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) -> ( -u a e. NN0 -> ( E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) ) ) |
| 70 |
|
elznn0 |
|- ( a e. ZZ <-> ( a e. RR /\ ( a e. NN0 \/ -u a e. NN0 ) ) ) |
| 71 |
70
|
simprbi |
|- ( a e. ZZ -> ( a e. NN0 \/ -u a e. NN0 ) ) |
| 72 |
71
|
adantl |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) -> ( a e. NN0 \/ -u a e. NN0 ) ) |
| 73 |
16 69 72
|
mpjaod |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ a e. ZZ ) -> ( E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) ) |
| 74 |
73
|
rexlimdva |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR ) -> ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) ) |
| 75 |
74
|
expimpd |
|- ( D e. ( NN \ []NN ) -> ( ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) ) |
| 76 |
1 75
|
sylbid |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) ) |
| 77 |
76
|
imp |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( A e. ( Pell14QR ` D ) \/ -u A e. ( Pell14QR ` D ) ) ) |