| Step |
Hyp |
Ref |
Expression |
| 1 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
| 2 |
1
|
ad5antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( A x. B ) e. RR ) |
| 3 |
|
simprl |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. ZZ ) |
| 4 |
3
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> a e. ZZ ) |
| 5 |
|
simplrl |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> c e. ZZ ) |
| 6 |
4 5
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. c ) e. ZZ ) |
| 7 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> D e. NN ) |
| 9 |
8
|
nnzd |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> D e. ZZ ) |
| 10 |
9
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> D e. ZZ ) |
| 11 |
|
simplrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> d e. ZZ ) |
| 12 |
|
simprr |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. ZZ ) |
| 13 |
12
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> b e. ZZ ) |
| 14 |
11 13
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( d x. b ) e. ZZ ) |
| 15 |
10 14
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( D x. ( d x. b ) ) e. ZZ ) |
| 16 |
6 15
|
zaddcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. c ) + ( D x. ( d x. b ) ) ) e. ZZ ) |
| 17 |
4 11
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. d ) e. ZZ ) |
| 18 |
5 13
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c x. b ) e. ZZ ) |
| 19 |
17 18
|
zaddcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. d ) + ( c x. b ) ) e. ZZ ) |
| 20 |
|
simprl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 22 |
|
simprl |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> B = ( c + ( ( sqrt ` D ) x. d ) ) ) |
| 23 |
21 22
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( A x. B ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) ) |
| 24 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
| 25 |
24
|
ad2antrl |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. CC ) |
| 26 |
25
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> a e. CC ) |
| 27 |
8
|
nncnd |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> D e. CC ) |
| 28 |
27
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> D e. CC ) |
| 29 |
28
|
sqrtcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) e. CC ) |
| 30 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
| 31 |
30
|
ad2antll |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. CC ) |
| 32 |
31
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> b e. CC ) |
| 33 |
29 32
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) |
| 34 |
|
zcn |
|- ( c e. ZZ -> c e. CC ) |
| 35 |
34
|
adantr |
|- ( ( c e. ZZ /\ d e. ZZ ) -> c e. CC ) |
| 36 |
35
|
ad2antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> c e. CC ) |
| 37 |
|
zcn |
|- ( d e. ZZ -> d e. CC ) |
| 38 |
37
|
adantl |
|- ( ( c e. ZZ /\ d e. ZZ ) -> d e. CC ) |
| 39 |
38
|
ad2antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> d e. CC ) |
| 40 |
29 39
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. d ) e. CC ) |
| 41 |
26 33 36 40
|
muladdd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) = ( ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) + ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) ) ) |
| 42 |
29 39 29 32
|
mul4d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) = ( ( ( sqrt ` D ) x. ( sqrt ` D ) ) x. ( d x. b ) ) ) |
| 43 |
28
|
msqsqrtd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. ( sqrt ` D ) ) = D ) |
| 44 |
43
|
oveq1d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. ( sqrt ` D ) ) x. ( d x. b ) ) = ( D x. ( d x. b ) ) ) |
| 45 |
42 44
|
eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) = ( D x. ( d x. b ) ) ) |
| 46 |
45
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) = ( ( a x. c ) + ( D x. ( d x. b ) ) ) ) |
| 47 |
26 29 39
|
mul12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. ( ( sqrt ` D ) x. d ) ) = ( ( sqrt ` D ) x. ( a x. d ) ) ) |
| 48 |
36 29 32
|
mul12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c x. ( ( sqrt ` D ) x. b ) ) = ( ( sqrt ` D ) x. ( c x. b ) ) ) |
| 49 |
47 48
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) = ( ( ( sqrt ` D ) x. ( a x. d ) ) + ( ( sqrt ` D ) x. ( c x. b ) ) ) ) |
| 50 |
26 39
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. d ) e. CC ) |
| 51 |
36 32
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c x. b ) e. CC ) |
| 52 |
29 50 51
|
adddid |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) = ( ( ( sqrt ` D ) x. ( a x. d ) ) + ( ( sqrt ` D ) x. ( c x. b ) ) ) ) |
| 53 |
49 52
|
eqtr4d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) = ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) |
| 54 |
46 53
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) + ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) |
| 55 |
23 41 54
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) |
| 56 |
50 51
|
addcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. d ) + ( c x. b ) ) e. CC ) |
| 57 |
29 56
|
sqmuld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) |
| 58 |
28
|
sqsqrtd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
| 59 |
58
|
oveq1d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) = ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) |
| 60 |
57 59
|
eqtr2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) = ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) ) |
| 61 |
60
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) ) ) |
| 62 |
26 36
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. c ) e. CC ) |
| 63 |
39 32
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( d x. b ) e. CC ) |
| 64 |
28 63
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( D x. ( d x. b ) ) e. CC ) |
| 65 |
62 64
|
addcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. c ) + ( D x. ( d x. b ) ) ) e. CC ) |
| 66 |
29 56
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) e. CC ) |
| 67 |
|
subsq |
|- ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) e. CC /\ ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) e. CC ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) x. ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) ) |
| 68 |
65 66 67
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) x. ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) ) |
| 69 |
41 54
|
eqtr2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) ) |
| 70 |
26 33 36 40
|
mulsubd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) = ( ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) - ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) ) ) |
| 71 |
46 53
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) - ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) |
| 72 |
70 71
|
eqtr2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) = ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) |
| 73 |
69 72
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) x. ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) = ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) x. ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) ) |
| 74 |
61 68 73
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) x. ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) ) |
| 75 |
26 33
|
addcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. b ) ) e. CC ) |
| 76 |
36 40
|
addcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c + ( ( sqrt ` D ) x. d ) ) e. CC ) |
| 77 |
26 33
|
subcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a - ( ( sqrt ` D ) x. b ) ) e. CC ) |
| 78 |
36 40
|
subcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c - ( ( sqrt ` D ) x. d ) ) e. CC ) |
| 79 |
75 76 77 78
|
mul4d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) x. ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) = ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) x. ( ( c + ( ( sqrt ` D ) x. d ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) ) |
| 80 |
|
subsq |
|- ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
| 81 |
26 33 80
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
| 82 |
|
subsq |
|- ( ( c e. CC /\ ( ( sqrt ` D ) x. d ) e. CC ) -> ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) = ( ( c + ( ( sqrt ` D ) x. d ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) |
| 83 |
36 40 82
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) = ( ( c + ( ( sqrt ` D ) x. d ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) |
| 84 |
81 83
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) ) = ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) x. ( ( c + ( ( sqrt ` D ) x. d ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) ) |
| 85 |
29 32
|
sqmuld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) |
| 86 |
85
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) ) |
| 87 |
29 39
|
sqmuld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. d ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) |
| 88 |
87
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) = ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) |
| 89 |
86 88
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) ) = ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) ) |
| 90 |
79 84 89
|
3eqtr2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) x. ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) = ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) ) |
| 91 |
58
|
oveq1d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
| 92 |
91
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
| 93 |
58
|
oveq1d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) = ( D x. ( d ^ 2 ) ) ) |
| 94 |
93
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) = ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) |
| 95 |
92 94
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) = ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) ) |
| 96 |
|
simprr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
| 97 |
96
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
| 98 |
|
simprr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) |
| 99 |
97 98
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) = ( 1 x. 1 ) ) |
| 100 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 101 |
100
|
a1i |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( 1 x. 1 ) = 1 ) |
| 102 |
95 99 101
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) = 1 ) |
| 103 |
74 90 102
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = 1 ) |
| 104 |
|
oveq1 |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( e + ( ( sqrt ` D ) x. f ) ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) ) |
| 105 |
104
|
eqeq2d |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) <-> ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) ) ) |
| 106 |
|
oveq1 |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( e ^ 2 ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) ) |
| 107 |
106
|
oveq1d |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) ) |
| 108 |
107
|
eqeq1d |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 <-> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) |
| 109 |
105 108
|
anbi12d |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) <-> ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) /\ ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) |
| 110 |
|
oveq2 |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( sqrt ` D ) x. f ) = ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) |
| 111 |
110
|
oveq2d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) |
| 112 |
111
|
eqeq2d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) <-> ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) ) |
| 113 |
|
oveq1 |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( f ^ 2 ) = ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) |
| 114 |
113
|
oveq2d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( D x. ( f ^ 2 ) ) = ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) |
| 115 |
114
|
oveq2d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) ) |
| 116 |
115
|
eqeq1d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 <-> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = 1 ) ) |
| 117 |
112 116
|
anbi12d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) /\ ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) <-> ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) /\ ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = 1 ) ) ) |
| 118 |
109 117
|
rspc2ev |
|- ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) e. ZZ /\ ( ( a x. d ) + ( c x. b ) ) e. ZZ /\ ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) /\ ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = 1 ) ) -> E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) |
| 119 |
16 19 55 103 118
|
syl112anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) |
| 120 |
2 119
|
jca |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) |
| 121 |
120
|
ex |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) -> ( ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
| 122 |
121
|
rexlimdvva |
|- ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
| 123 |
122
|
ex |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) ) |
| 124 |
123
|
rexlimdvva |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) -> ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) ) |
| 125 |
124
|
impd |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
| 126 |
125
|
expimpd |
|- ( D e. ( NN \ []NN ) -> ( ( ( A e. RR /\ B e. RR ) /\ ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
| 127 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) <-> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 128 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( B e. ( Pell1234QR ` D ) <-> ( B e. RR /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
| 129 |
127 128
|
anbi12d |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) <-> ( ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( B e. RR /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) ) |
| 130 |
|
an4 |
|- ( ( ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( B e. RR /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) <-> ( ( A e. RR /\ B e. RR ) /\ ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
| 131 |
129 130
|
bitrdi |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) <-> ( ( A e. RR /\ B e. RR ) /\ ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) ) |
| 132 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( ( A x. B ) e. ( Pell1234QR ` D ) <-> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
| 133 |
126 131 132
|
3imtr4d |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) -> ( A x. B ) e. ( Pell1234QR ` D ) ) ) |
| 134 |
133
|
3impib |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) -> ( A x. B ) e. ( Pell1234QR ` D ) ) |