Step |
Hyp |
Ref |
Expression |
1 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
2 |
1
|
ad5antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( A x. B ) e. RR ) |
3 |
|
simprl |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. ZZ ) |
4 |
3
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> a e. ZZ ) |
5 |
|
simplrl |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> c e. ZZ ) |
6 |
4 5
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. c ) e. ZZ ) |
7 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
8 |
7
|
ad2antrr |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> D e. NN ) |
9 |
8
|
nnzd |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> D e. ZZ ) |
10 |
9
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> D e. ZZ ) |
11 |
|
simplrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> d e. ZZ ) |
12 |
|
simprr |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. ZZ ) |
13 |
12
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> b e. ZZ ) |
14 |
11 13
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( d x. b ) e. ZZ ) |
15 |
10 14
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( D x. ( d x. b ) ) e. ZZ ) |
16 |
6 15
|
zaddcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. c ) + ( D x. ( d x. b ) ) ) e. ZZ ) |
17 |
4 11
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. d ) e. ZZ ) |
18 |
5 13
|
zmulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c x. b ) e. ZZ ) |
19 |
17 18
|
zaddcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. d ) + ( c x. b ) ) e. ZZ ) |
20 |
|
simprl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
22 |
|
simprl |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> B = ( c + ( ( sqrt ` D ) x. d ) ) ) |
23 |
21 22
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( A x. B ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) ) |
24 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
25 |
24
|
ad2antrl |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. CC ) |
26 |
25
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> a e. CC ) |
27 |
8
|
nncnd |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> D e. CC ) |
28 |
27
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> D e. CC ) |
29 |
28
|
sqrtcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( sqrt ` D ) e. CC ) |
30 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
31 |
30
|
ad2antll |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. CC ) |
32 |
31
|
ad3antrrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> b e. CC ) |
33 |
29 32
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) |
34 |
|
zcn |
|- ( c e. ZZ -> c e. CC ) |
35 |
34
|
adantr |
|- ( ( c e. ZZ /\ d e. ZZ ) -> c e. CC ) |
36 |
35
|
ad2antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> c e. CC ) |
37 |
|
zcn |
|- ( d e. ZZ -> d e. CC ) |
38 |
37
|
adantl |
|- ( ( c e. ZZ /\ d e. ZZ ) -> d e. CC ) |
39 |
38
|
ad2antlr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> d e. CC ) |
40 |
29 39
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. d ) e. CC ) |
41 |
26 33 36 40
|
muladdd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) = ( ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) + ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) ) ) |
42 |
29 39 29 32
|
mul4d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) = ( ( ( sqrt ` D ) x. ( sqrt ` D ) ) x. ( d x. b ) ) ) |
43 |
28
|
msqsqrtd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. ( sqrt ` D ) ) = D ) |
44 |
43
|
oveq1d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. ( sqrt ` D ) ) x. ( d x. b ) ) = ( D x. ( d x. b ) ) ) |
45 |
42 44
|
eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) = ( D x. ( d x. b ) ) ) |
46 |
45
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) = ( ( a x. c ) + ( D x. ( d x. b ) ) ) ) |
47 |
26 29 39
|
mul12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. ( ( sqrt ` D ) x. d ) ) = ( ( sqrt ` D ) x. ( a x. d ) ) ) |
48 |
36 29 32
|
mul12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c x. ( ( sqrt ` D ) x. b ) ) = ( ( sqrt ` D ) x. ( c x. b ) ) ) |
49 |
47 48
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) = ( ( ( sqrt ` D ) x. ( a x. d ) ) + ( ( sqrt ` D ) x. ( c x. b ) ) ) ) |
50 |
26 39
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. d ) e. CC ) |
51 |
36 32
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c x. b ) e. CC ) |
52 |
29 50 51
|
adddid |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) = ( ( ( sqrt ` D ) x. ( a x. d ) ) + ( ( sqrt ` D ) x. ( c x. b ) ) ) ) |
53 |
49 52
|
eqtr4d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) = ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) |
54 |
46 53
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) + ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) |
55 |
23 41 54
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) |
56 |
50 51
|
addcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. d ) + ( c x. b ) ) e. CC ) |
57 |
29 56
|
sqmuld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) |
58 |
28
|
sqsqrtd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
59 |
58
|
oveq1d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) = ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) |
60 |
57 59
|
eqtr2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) = ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) ) |
61 |
60
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) ) ) |
62 |
26 36
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a x. c ) e. CC ) |
63 |
39 32
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( d x. b ) e. CC ) |
64 |
28 63
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( D x. ( d x. b ) ) e. CC ) |
65 |
62 64
|
addcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a x. c ) + ( D x. ( d x. b ) ) ) e. CC ) |
66 |
29 56
|
mulcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) e. CC ) |
67 |
|
subsq |
|- ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) e. CC /\ ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) e. CC ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) x. ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) ) |
68 |
65 66 67
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ^ 2 ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) x. ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) ) |
69 |
41 54
|
eqtr2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) ) |
70 |
26 33 36 40
|
mulsubd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) = ( ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) - ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) ) ) |
71 |
46 53
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a x. c ) + ( ( ( sqrt ` D ) x. d ) x. ( ( sqrt ` D ) x. b ) ) ) - ( ( a x. ( ( sqrt ` D ) x. d ) ) + ( c x. ( ( sqrt ` D ) x. b ) ) ) ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) |
72 |
70 71
|
eqtr2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) = ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) |
73 |
69 72
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) x. ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) - ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) = ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) x. ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) ) |
74 |
61 68 73
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) x. ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) ) |
75 |
26 33
|
addcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. b ) ) e. CC ) |
76 |
36 40
|
addcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c + ( ( sqrt ` D ) x. d ) ) e. CC ) |
77 |
26 33
|
subcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( a - ( ( sqrt ` D ) x. b ) ) e. CC ) |
78 |
36 40
|
subcld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( c - ( ( sqrt ` D ) x. d ) ) e. CC ) |
79 |
75 76 77 78
|
mul4d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) x. ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) = ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) x. ( ( c + ( ( sqrt ` D ) x. d ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) ) |
80 |
|
subsq |
|- ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
81 |
26 33 80
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
82 |
|
subsq |
|- ( ( c e. CC /\ ( ( sqrt ` D ) x. d ) e. CC ) -> ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) = ( ( c + ( ( sqrt ` D ) x. d ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) |
83 |
36 40 82
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) = ( ( c + ( ( sqrt ` D ) x. d ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) |
84 |
81 83
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) ) = ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) x. ( ( c + ( ( sqrt ` D ) x. d ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) ) |
85 |
29 32
|
sqmuld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) |
86 |
85
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) ) |
87 |
29 39
|
sqmuld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) x. d ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) |
88 |
87
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) = ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) |
89 |
86 88
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) x. d ) ^ 2 ) ) ) = ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) ) |
90 |
79 84 89
|
3eqtr2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( c + ( ( sqrt ` D ) x. d ) ) ) x. ( ( a - ( ( sqrt ` D ) x. b ) ) x. ( c - ( ( sqrt ` D ) x. d ) ) ) ) = ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) ) |
91 |
58
|
oveq1d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
92 |
91
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
93 |
58
|
oveq1d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) = ( D x. ( d ^ 2 ) ) ) |
94 |
93
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) = ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) |
95 |
92 94
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) = ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) ) |
96 |
|
simprr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
97 |
96
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
98 |
|
simprr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) |
99 |
97 98
|
oveq12d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) ) = ( 1 x. 1 ) ) |
100 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
101 |
100
|
a1i |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( 1 x. 1 ) = 1 ) |
102 |
95 99 101
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( a ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) x. ( ( c ^ 2 ) - ( ( ( sqrt ` D ) ^ 2 ) x. ( d ^ 2 ) ) ) ) = 1 ) |
103 |
74 90 102
|
3eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = 1 ) |
104 |
|
oveq1 |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( e + ( ( sqrt ` D ) x. f ) ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) ) |
105 |
104
|
eqeq2d |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) <-> ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) ) ) |
106 |
|
oveq1 |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( e ^ 2 ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) ) |
107 |
106
|
oveq1d |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) ) |
108 |
107
|
eqeq1d |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 <-> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) |
109 |
105 108
|
anbi12d |
|- ( e = ( ( a x. c ) + ( D x. ( d x. b ) ) ) -> ( ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) <-> ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) /\ ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) |
110 |
|
oveq2 |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( sqrt ` D ) x. f ) = ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) |
111 |
110
|
oveq2d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) |
112 |
111
|
eqeq2d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) <-> ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) ) ) |
113 |
|
oveq1 |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( f ^ 2 ) = ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) |
114 |
113
|
oveq2d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( D x. ( f ^ 2 ) ) = ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) |
115 |
114
|
oveq2d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) ) |
116 |
115
|
eqeq1d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 <-> ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = 1 ) ) |
117 |
112 116
|
anbi12d |
|- ( f = ( ( a x. d ) + ( c x. b ) ) -> ( ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. f ) ) /\ ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) <-> ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) /\ ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = 1 ) ) ) |
118 |
109 117
|
rspc2ev |
|- ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) e. ZZ /\ ( ( a x. d ) + ( c x. b ) ) e. ZZ /\ ( ( A x. B ) = ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) + ( ( sqrt ` D ) x. ( ( a x. d ) + ( c x. b ) ) ) ) /\ ( ( ( ( a x. c ) + ( D x. ( d x. b ) ) ) ^ 2 ) - ( D x. ( ( ( a x. d ) + ( c x. b ) ) ^ 2 ) ) ) = 1 ) ) -> E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) |
119 |
16 19 55 103 118
|
syl112anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) |
120 |
2 119
|
jca |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) /\ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) |
121 |
120
|
ex |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( c e. ZZ /\ d e. ZZ ) ) -> ( ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
122 |
121
|
rexlimdvva |
|- ( ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
123 |
122
|
ex |
|- ( ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) ) |
124 |
123
|
rexlimdvva |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) -> ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) ) |
125 |
124
|
impd |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
126 |
125
|
expimpd |
|- ( D e. ( NN \ []NN ) -> ( ( ( A e. RR /\ B e. RR ) /\ ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) -> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
127 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) <-> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
128 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( B e. ( Pell1234QR ` D ) <-> ( B e. RR /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
129 |
127 128
|
anbi12d |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) <-> ( ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( B e. RR /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) ) |
130 |
|
an4 |
|- ( ( ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ ( B e. RR /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) <-> ( ( A e. RR /\ B e. RR ) /\ ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) |
131 |
129 130
|
bitrdi |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) <-> ( ( A e. RR /\ B e. RR ) /\ ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ E. c e. ZZ E. d e. ZZ ( B = ( c + ( ( sqrt ` D ) x. d ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) ) ) ) ) |
132 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( ( A x. B ) e. ( Pell1234QR ` D ) <-> ( ( A x. B ) e. RR /\ E. e e. ZZ E. f e. ZZ ( ( A x. B ) = ( e + ( ( sqrt ` D ) x. f ) ) /\ ( ( e ^ 2 ) - ( D x. ( f ^ 2 ) ) ) = 1 ) ) ) ) |
133 |
126 131 132
|
3imtr4d |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) -> ( A x. B ) e. ( Pell1234QR ` D ) ) ) |
134 |
133
|
3impib |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) -> ( A x. B ) e. ( Pell1234QR ` D ) ) |