Step |
Hyp |
Ref |
Expression |
1 |
|
elpell1234qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) <-> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
2 |
|
simprl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
3 |
|
ax-1ne0 |
|- 1 =/= 0 |
4 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
5 |
4
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR ) -> D e. NN ) |
6 |
5
|
nncnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR ) -> D e. CC ) |
7 |
6
|
ad3antrrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> D e. CC ) |
8 |
7
|
sqrtcld |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( sqrt ` D ) e. CC ) |
9 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
10 |
9
|
ad2antll |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. CC ) |
11 |
10
|
ad2antrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> b e. CC ) |
12 |
8 11
|
sqmuld |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) |
13 |
7
|
sqsqrtd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
14 |
13
|
oveq1d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
15 |
12 14
|
eqtr2d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( D x. ( b ^ 2 ) ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) |
16 |
15
|
oveq2d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) ) |
17 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
18 |
17
|
ad2antrl |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. CC ) |
19 |
18
|
ad2antrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> a e. CC ) |
20 |
8 11
|
mulcld |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( sqrt ` D ) x. b ) e. CC ) |
21 |
|
subsq |
|- ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
22 |
19 20 21
|
syl2anc |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
23 |
16 22
|
eqtrd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
24 |
|
simplr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
25 |
|
simpr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) |
26 |
25
|
oveq1d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) = ( 0 x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
27 |
19 20
|
subcld |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( a - ( ( sqrt ` D ) x. b ) ) e. CC ) |
28 |
27
|
mul02d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( 0 x. ( a - ( ( sqrt ` D ) x. b ) ) ) = 0 ) |
29 |
26 28
|
eqtrd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) = 0 ) |
30 |
23 24 29
|
3eqtr3d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) /\ ( a + ( ( sqrt ` D ) x. b ) ) = 0 ) -> 1 = 0 ) |
31 |
30
|
ex |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( a + ( ( sqrt ` D ) x. b ) ) = 0 -> 1 = 0 ) ) |
32 |
31
|
necon3d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 1 =/= 0 -> ( a + ( ( sqrt ` D ) x. b ) ) =/= 0 ) ) |
33 |
3 32
|
mpi |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a + ( ( sqrt ` D ) x. b ) ) =/= 0 ) |
34 |
33
|
adantrl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. b ) ) =/= 0 ) |
35 |
2 34
|
eqnetrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A =/= 0 ) |
36 |
35
|
ex |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> A =/= 0 ) ) |
37 |
36
|
rexlimdvva |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR ) -> ( E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> A =/= 0 ) ) |
38 |
37
|
expimpd |
|- ( D e. ( NN \ []NN ) -> ( ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A =/= 0 ) ) |
39 |
1 38
|
sylbid |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) -> A =/= 0 ) ) |
40 |
39
|
imp |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A =/= 0 ) |