Metamath Proof Explorer


Theorem pell1234qrre

Description: General Pell solutions are (coded as) real numbers. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell1234qrre
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR )

Proof

Step Hyp Ref Expression
1 elpell1234qr
 |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell1234QR ` D ) <-> ( A e. RR /\ E. a e. ZZ E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) )
2 1 simprbda
 |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR )