| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpell14qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 2 |
1
|
biimpa |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 3 |
|
simplrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> b e. ZZ ) |
| 4 |
|
elznn0 |
|- ( b e. ZZ <-> ( b e. RR /\ ( b e. NN0 \/ -u b e. NN0 ) ) ) |
| 5 |
3 4
|
sylib |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. RR /\ ( b e. NN0 \/ -u b e. NN0 ) ) ) |
| 6 |
5
|
simprd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. NN0 \/ -u b e. NN0 ) ) |
| 7 |
|
simplr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> A e. RR ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> A e. RR ) |
| 9 |
|
simprl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> a e. NN0 ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> a e. NN0 ) |
| 11 |
|
simpr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> b e. NN0 ) |
| 12 |
|
simplr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 13 |
|
rsp2e |
|- ( ( a e. NN0 /\ b e. NN0 /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 14 |
10 11 12 13
|
syl3anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 15 |
8 14
|
jca |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ b e. NN0 ) -> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 16 |
15
|
ex |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. NN0 -> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 17 |
|
elpell1qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 18 |
17
|
ad4antr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 19 |
16 18
|
sylibrd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( b e. NN0 -> A e. ( Pell1QR ` D ) ) ) |
| 20 |
7
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> A e. RR ) |
| 21 |
|
pell14qrne0 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A =/= 0 ) |
| 22 |
21
|
ad4antr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> A =/= 0 ) |
| 23 |
20 22
|
rereccld |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( 1 / A ) e. RR ) |
| 24 |
9
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> a e. NN0 ) |
| 25 |
|
simpr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> -u b e. NN0 ) |
| 26 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
| 27 |
26
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) |
| 28 |
27 21
|
reccld |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 / A ) e. CC ) |
| 29 |
28
|
ad3antrrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) e. CC ) |
| 30 |
|
nn0cn |
|- ( a e. NN0 -> a e. CC ) |
| 31 |
30
|
ad2antrl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> a e. CC ) |
| 32 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
| 33 |
32
|
nncnd |
|- ( D e. ( NN \ []NN ) -> D e. CC ) |
| 34 |
33
|
ad3antrrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> D e. CC ) |
| 35 |
34
|
sqrtcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( sqrt ` D ) e. CC ) |
| 36 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
| 37 |
36
|
ad2antll |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> b e. CC ) |
| 38 |
37
|
negcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> -u b e. CC ) |
| 39 |
35 38
|
mulcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( sqrt ` D ) x. -u b ) e. CC ) |
| 40 |
31 39
|
addcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) e. CC ) |
| 41 |
40
|
adantr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) e. CC ) |
| 42 |
27
|
ad3antrrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A e. CC ) |
| 43 |
21
|
ad3antrrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A =/= 0 ) |
| 44 |
27 21
|
recidd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A x. ( 1 / A ) ) = 1 ) |
| 45 |
44
|
ad3antrrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = 1 ) |
| 46 |
|
simprr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
| 47 |
45 46
|
eqtr4d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
| 48 |
31
|
adantr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> a e. CC ) |
| 49 |
35 37
|
mulcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) |
| 50 |
49
|
adantr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( ( sqrt ` D ) x. b ) e. CC ) |
| 51 |
|
subsq |
|- ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
| 52 |
48 50 51
|
syl2anc |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
| 53 |
35 37
|
sqmuld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) |
| 54 |
34
|
sqsqrtd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
| 55 |
54
|
oveq1d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
| 56 |
53 55
|
eqtr2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( D x. ( b ^ 2 ) ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) |
| 57 |
56
|
oveq2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) ) |
| 58 |
57
|
adantr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) ) |
| 59 |
|
simpr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 60 |
35 37
|
mulneg2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( sqrt ` D ) x. -u b ) = -u ( ( sqrt ` D ) x. b ) ) |
| 61 |
60
|
oveq2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a + -u ( ( sqrt ` D ) x. b ) ) ) |
| 62 |
|
negsub |
|- ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( a + -u ( ( sqrt ` D ) x. b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) |
| 63 |
62
|
eqcomd |
|- ( ( a e. CC /\ ( ( sqrt ` D ) x. b ) e. CC ) -> ( a - ( ( sqrt ` D ) x. b ) ) = ( a + -u ( ( sqrt ` D ) x. b ) ) ) |
| 64 |
31 49 63
|
syl2anc |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( a - ( ( sqrt ` D ) x. b ) ) = ( a + -u ( ( sqrt ` D ) x. b ) ) ) |
| 65 |
61 64
|
eqtr4d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) |
| 66 |
65
|
adantr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( a + ( ( sqrt ` D ) x. -u b ) ) = ( a - ( ( sqrt ` D ) x. b ) ) ) |
| 67 |
59 66
|
oveq12d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) = ( ( a + ( ( sqrt ` D ) x. b ) ) x. ( a - ( ( sqrt ` D ) x. b ) ) ) ) |
| 68 |
52 58 67
|
3eqtr4d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ A = ( a + ( ( sqrt ` D ) x. b ) ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) |
| 69 |
68
|
adantrr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) |
| 70 |
47 69
|
eqtrd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A x. ( 1 / A ) ) = ( A x. ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) |
| 71 |
29 41 42 43 70
|
mulcanad |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) |
| 73 |
37
|
ad2antrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> b e. CC ) |
| 74 |
|
sqneg |
|- ( b e. CC -> ( -u b ^ 2 ) = ( b ^ 2 ) ) |
| 75 |
73 74
|
syl |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( -u b ^ 2 ) = ( b ^ 2 ) ) |
| 76 |
75
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( D x. ( -u b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
| 77 |
76
|
oveq2d |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
| 78 |
|
simplrr |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
| 79 |
77 78
|
eqtrd |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) |
| 80 |
72 79
|
jca |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) |
| 81 |
|
oveq2 |
|- ( c = -u b -> ( ( sqrt ` D ) x. c ) = ( ( sqrt ` D ) x. -u b ) ) |
| 82 |
81
|
oveq2d |
|- ( c = -u b -> ( a + ( ( sqrt ` D ) x. c ) ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) |
| 83 |
82
|
eqeq2d |
|- ( c = -u b -> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) <-> ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) ) ) |
| 84 |
|
oveq1 |
|- ( c = -u b -> ( c ^ 2 ) = ( -u b ^ 2 ) ) |
| 85 |
84
|
oveq2d |
|- ( c = -u b -> ( D x. ( c ^ 2 ) ) = ( D x. ( -u b ^ 2 ) ) ) |
| 86 |
85
|
oveq2d |
|- ( c = -u b -> ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) ) |
| 87 |
86
|
eqeq1d |
|- ( c = -u b -> ( ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 <-> ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) |
| 88 |
83 87
|
anbi12d |
|- ( c = -u b -> ( ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) <-> ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) ) |
| 89 |
88
|
rspcev |
|- ( ( -u b e. NN0 /\ ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. -u b ) ) /\ ( ( a ^ 2 ) - ( D x. ( -u b ^ 2 ) ) ) = 1 ) ) -> E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) |
| 90 |
25 80 89
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) |
| 91 |
|
rspe |
|- ( ( a e. NN0 /\ E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) |
| 92 |
24 90 91
|
syl2anc |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) |
| 93 |
23 92
|
jca |
|- ( ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) /\ -u b e. NN0 ) -> ( ( 1 / A ) e. RR /\ E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) ) |
| 94 |
93
|
ex |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u b e. NN0 -> ( ( 1 / A ) e. RR /\ E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) ) ) |
| 95 |
|
elpell1qr |
|- ( D e. ( NN \ []NN ) -> ( ( 1 / A ) e. ( Pell1QR ` D ) <-> ( ( 1 / A ) e. RR /\ E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) ) ) |
| 96 |
95
|
ad4antr |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( 1 / A ) e. ( Pell1QR ` D ) <-> ( ( 1 / A ) e. RR /\ E. a e. NN0 E. c e. NN0 ( ( 1 / A ) = ( a + ( ( sqrt ` D ) x. c ) ) /\ ( ( a ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = 1 ) ) ) ) |
| 97 |
94 96
|
sylibrd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( -u b e. NN0 -> ( 1 / A ) e. ( Pell1QR ` D ) ) ) |
| 98 |
19 97
|
orim12d |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( ( b e. NN0 \/ -u b e. NN0 ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) ) |
| 99 |
6 98
|
mpd |
|- ( ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) |
| 100 |
99
|
ex |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) ) |
| 101 |
100
|
rexlimdvva |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ A e. RR ) -> ( E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) ) |
| 102 |
101
|
expimpd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) ) |
| 103 |
2 102
|
mpd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A e. ( Pell1QR ` D ) \/ ( 1 / A ) e. ( Pell1QR ` D ) ) ) |