| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> A e. CC ) | 
						
							| 4 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ B e. ( Pell14QR ` D ) ) -> B e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ( D e. ( NN \ []NN ) /\ B e. ( Pell14QR ` D ) ) -> B e. CC ) | 
						
							| 6 | 5 | 3adant2 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> B e. CC ) | 
						
							| 7 |  | pell14qrne0 |  |-  ( ( D e. ( NN \ []NN ) /\ B e. ( Pell14QR ` D ) ) -> B =/= 0 ) | 
						
							| 8 | 7 | 3adant2 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> B =/= 0 ) | 
						
							| 9 | 3 6 8 | divrecd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) | 
						
							| 10 |  | pell14qrreccl |  |-  ( ( D e. ( NN \ []NN ) /\ B e. ( Pell14QR ` D ) ) -> ( 1 / B ) e. ( Pell14QR ` D ) ) | 
						
							| 11 | 10 | 3adant2 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( 1 / B ) e. ( Pell14QR ` D ) ) | 
						
							| 12 |  | pell14qrmulcl |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ ( 1 / B ) e. ( Pell14QR ` D ) ) -> ( A x. ( 1 / B ) ) e. ( Pell14QR ` D ) ) | 
						
							| 13 | 11 12 | syld3an3 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A x. ( 1 / B ) ) e. ( Pell14QR ` D ) ) | 
						
							| 14 | 9 13 | eqeltrd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A / B ) e. ( Pell14QR ` D ) ) |