Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0 |
|- ( B e. ZZ <-> ( B e. RR /\ ( B e. NN0 \/ -u B e. NN0 ) ) ) |
2 |
|
simplll |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ B e. NN0 ) -> D e. ( NN \ []NN ) ) |
3 |
|
simpllr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ B e. NN0 ) -> A e. ( Pell14QR ` D ) ) |
4 |
|
simpr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ B e. NN0 ) -> B e. NN0 ) |
5 |
|
pell14qrexpclnn0 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. NN0 ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ B e. NN0 ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) |
7 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
8 |
7
|
recnd |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) |
9 |
8
|
ad2antrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> A e. CC ) |
10 |
|
simplr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> B e. RR ) |
11 |
10
|
recnd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> B e. CC ) |
12 |
|
simpr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> -u B e. NN0 ) |
13 |
|
expneg2 |
|- ( ( A e. CC /\ B e. CC /\ -u B e. NN0 ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) ) |
14 |
9 11 12 13
|
syl3anc |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) ) |
15 |
|
simplll |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> D e. ( NN \ []NN ) ) |
16 |
|
simpllr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> A e. ( Pell14QR ` D ) ) |
17 |
|
pell14qrexpclnn0 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ -u B e. NN0 ) -> ( A ^ -u B ) e. ( Pell14QR ` D ) ) |
18 |
15 16 12 17
|
syl3anc |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> ( A ^ -u B ) e. ( Pell14QR ` D ) ) |
19 |
|
pell14qrreccl |
|- ( ( D e. ( NN \ []NN ) /\ ( A ^ -u B ) e. ( Pell14QR ` D ) ) -> ( 1 / ( A ^ -u B ) ) e. ( Pell14QR ` D ) ) |
20 |
15 18 19
|
syl2anc |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> ( 1 / ( A ^ -u B ) ) e. ( Pell14QR ` D ) ) |
21 |
14 20
|
eqeltrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ -u B e. NN0 ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) |
22 |
6 21
|
jaodan |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ B e. RR ) /\ ( B e. NN0 \/ -u B e. NN0 ) ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) |
23 |
22
|
expl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( B e. RR /\ ( B e. NN0 \/ -u B e. NN0 ) ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) ) |
24 |
1 23
|
syl5bi |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( B e. ZZ -> ( A ^ B ) e. ( Pell14QR ` D ) ) ) |
25 |
24
|
3impia |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ZZ ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) |