| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( a = 0 -> ( A ^ a ) = ( A ^ 0 ) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( a = 0 -> ( ( A ^ a ) e. ( Pell14QR ` D ) <-> ( A ^ 0 ) e. ( Pell14QR ` D ) ) ) | 
						
							| 3 | 2 | imbi2d |  |-  ( a = 0 -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ a ) e. ( Pell14QR ` D ) ) <-> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ 0 ) e. ( Pell14QR ` D ) ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( a = b -> ( A ^ a ) = ( A ^ b ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( a = b -> ( ( A ^ a ) e. ( Pell14QR ` D ) <-> ( A ^ b ) e. ( Pell14QR ` D ) ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( a = b -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ a ) e. ( Pell14QR ` D ) ) <-> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ b ) e. ( Pell14QR ` D ) ) ) ) | 
						
							| 7 |  | oveq2 |  |-  ( a = ( b + 1 ) -> ( A ^ a ) = ( A ^ ( b + 1 ) ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( a = ( b + 1 ) -> ( ( A ^ a ) e. ( Pell14QR ` D ) <-> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( a = ( b + 1 ) -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ a ) e. ( Pell14QR ` D ) ) <-> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) ) ) | 
						
							| 10 |  | oveq2 |  |-  ( a = B -> ( A ^ a ) = ( A ^ B ) ) | 
						
							| 11 | 10 | eleq1d |  |-  ( a = B -> ( ( A ^ a ) e. ( Pell14QR ` D ) <-> ( A ^ B ) e. ( Pell14QR ` D ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( a = B -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ a ) e. ( Pell14QR ` D ) ) <-> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) ) ) | 
						
							| 13 |  | pell14qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) | 
						
							| 14 | 13 | recnd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. CC ) | 
						
							| 15 | 14 | exp0d |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ 0 ) = 1 ) | 
						
							| 16 |  | pell14qrne0 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A =/= 0 ) | 
						
							| 17 | 14 16 | dividd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A / A ) = 1 ) | 
						
							| 18 | 15 17 | eqtr4d |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ 0 ) = ( A / A ) ) | 
						
							| 19 |  | pell14qrdivcl |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ A e. ( Pell14QR ` D ) ) -> ( A / A ) e. ( Pell14QR ` D ) ) | 
						
							| 20 | 19 | 3anidm23 |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A / A ) e. ( Pell14QR ` D ) ) | 
						
							| 21 | 18 20 | eqeltrd |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ 0 ) e. ( Pell14QR ` D ) ) | 
						
							| 22 | 14 | 3ad2ant2 |  |-  ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> A e. CC ) | 
						
							| 23 |  | simp1 |  |-  ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> b e. NN0 ) | 
						
							| 24 | 22 23 | expp1d |  |-  ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( A ^ ( b + 1 ) ) = ( ( A ^ b ) x. A ) ) | 
						
							| 25 |  | simp2l |  |-  ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> D e. ( NN \ []NN ) ) | 
						
							| 26 |  | simp3 |  |-  ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( A ^ b ) e. ( Pell14QR ` D ) ) | 
						
							| 27 |  | simp2r |  |-  ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> A e. ( Pell14QR ` D ) ) | 
						
							| 28 |  | pell14qrmulcl |  |-  ( ( D e. ( NN \ []NN ) /\ ( A ^ b ) e. ( Pell14QR ` D ) /\ A e. ( Pell14QR ` D ) ) -> ( ( A ^ b ) x. A ) e. ( Pell14QR ` D ) ) | 
						
							| 29 | 25 26 27 28 | syl3anc |  |-  ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( ( A ^ b ) x. A ) e. ( Pell14QR ` D ) ) | 
						
							| 30 | 24 29 | eqeltrd |  |-  ( ( b e. NN0 /\ ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) /\ ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) | 
						
							| 31 | 30 | 3exp |  |-  ( b e. NN0 -> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( ( A ^ b ) e. ( Pell14QR ` D ) -> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) ) ) | 
						
							| 32 | 31 | a2d |  |-  ( b e. NN0 -> ( ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ b ) e. ( Pell14QR ` D ) ) -> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ ( b + 1 ) ) e. ( Pell14QR ` D ) ) ) ) | 
						
							| 33 | 3 6 9 12 21 32 | nn0ind |  |-  ( B e. NN0 -> ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) ) | 
						
							| 34 | 33 | expdcom |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) -> ( B e. NN0 -> ( A ^ B ) e. ( Pell14QR ` D ) ) ) ) | 
						
							| 35 | 34 | 3imp |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. NN0 ) -> ( A ^ B ) e. ( Pell14QR ` D ) ) |