Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. ( Pell14QR ` D ) ) |
2 |
|
1re |
|- 1 e. RR |
3 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> A e. RR ) |
4 |
|
ltle |
|- ( ( 1 e. RR /\ A e. RR ) -> ( 1 < A -> 1 <_ A ) ) |
5 |
2 3 4
|
sylancr |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 < A -> 1 <_ A ) ) |
6 |
5
|
3impia |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> 1 <_ A ) |
7 |
|
elpell1qr2 |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) ) |
8 |
7
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. ( Pell14QR ` D ) /\ 1 <_ A ) ) ) |
9 |
1 6 8
|
mpbir2and |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> A e. ( Pell1QR ` D ) ) |
10 |
|
pell1qrgap |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) |
11 |
9 10
|
syld3an2 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ 1 < A ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ A ) |