Step |
Hyp |
Ref |
Expression |
1 |
|
elpell14qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
2 |
|
0cnd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 e. CC ) |
3 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
4 |
3
|
ad3antrrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. NN ) |
5 |
4
|
nnred |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. RR ) |
6 |
4
|
nnnn0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. NN0 ) |
7 |
6
|
nn0ge0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ D ) |
8 |
5 7
|
resqrtcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( sqrt ` D ) e. RR ) |
9 |
|
zre |
|- ( b e. ZZ -> b e. RR ) |
10 |
9
|
adantl |
|- ( ( a e. NN0 /\ b e. ZZ ) -> b e. RR ) |
11 |
10
|
ad2antlr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> b e. RR ) |
12 |
8 11
|
remulcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` D ) x. b ) e. RR ) |
13 |
12
|
recnd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` D ) x. b ) e. CC ) |
14 |
2 13
|
abssubd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( 0 - ( ( sqrt ` D ) x. b ) ) ) = ( abs ` ( ( ( sqrt ` D ) x. b ) - 0 ) ) ) |
15 |
13
|
subid1d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( ( sqrt ` D ) x. b ) - 0 ) = ( ( sqrt ` D ) x. b ) ) |
16 |
15
|
fveq2d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( ( ( sqrt ` D ) x. b ) - 0 ) ) = ( abs ` ( ( sqrt ` D ) x. b ) ) ) |
17 |
14 16
|
eqtrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( 0 - ( ( sqrt ` D ) x. b ) ) ) = ( abs ` ( ( sqrt ` D ) x. b ) ) ) |
18 |
|
absresq |
|- ( ( ( sqrt ` D ) x. b ) e. RR -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) |
19 |
12 18
|
syl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) = ( ( ( sqrt ` D ) x. b ) ^ 2 ) ) |
20 |
5
|
recnd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. CC ) |
21 |
20
|
sqrtcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( sqrt ` D ) e. CC ) |
22 |
10
|
recnd |
|- ( ( a e. NN0 /\ b e. ZZ ) -> b e. CC ) |
23 |
22
|
ad2antlr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> b e. CC ) |
24 |
21 23
|
sqmuld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( ( sqrt ` D ) x. b ) ^ 2 ) = ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) ) |
25 |
20
|
sqsqrtd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` D ) ^ 2 ) = D ) |
26 |
25
|
oveq1d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( ( sqrt ` D ) ^ 2 ) x. ( b ^ 2 ) ) = ( D x. ( b ^ 2 ) ) ) |
27 |
19 24 26
|
3eqtrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) = ( D x. ( b ^ 2 ) ) ) |
28 |
|
0lt1 |
|- 0 < 1 |
29 |
|
simpr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) |
30 |
28 29
|
breqtrrid |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
31 |
11
|
resqcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( b ^ 2 ) e. RR ) |
32 |
5 31
|
remulcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( D x. ( b ^ 2 ) ) e. RR ) |
33 |
|
nn0re |
|- ( a e. NN0 -> a e. RR ) |
34 |
33
|
adantr |
|- ( ( a e. NN0 /\ b e. ZZ ) -> a e. RR ) |
35 |
34
|
ad2antlr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a e. RR ) |
36 |
35
|
resqcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a ^ 2 ) e. RR ) |
37 |
32 36
|
posdifd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( D x. ( b ^ 2 ) ) < ( a ^ 2 ) <-> 0 < ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) ) |
38 |
30 37
|
mpbird |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( D x. ( b ^ 2 ) ) < ( a ^ 2 ) ) |
39 |
27 38
|
eqbrtrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) < ( a ^ 2 ) ) |
40 |
13
|
abscld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( ( sqrt ` D ) x. b ) ) e. RR ) |
41 |
13
|
absge0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ ( abs ` ( ( sqrt ` D ) x. b ) ) ) |
42 |
|
nn0ge0 |
|- ( a e. NN0 -> 0 <_ a ) |
43 |
42
|
adantr |
|- ( ( a e. NN0 /\ b e. ZZ ) -> 0 <_ a ) |
44 |
43
|
ad2antlr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ a ) |
45 |
40 35 41 44
|
lt2sqd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( ( sqrt ` D ) x. b ) ) < a <-> ( ( abs ` ( ( sqrt ` D ) x. b ) ) ^ 2 ) < ( a ^ 2 ) ) ) |
46 |
39 45
|
mpbird |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( ( sqrt ` D ) x. b ) ) < a ) |
47 |
17 46
|
eqbrtrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( abs ` ( 0 - ( ( sqrt ` D ) x. b ) ) ) < a ) |
48 |
|
0red |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 e. RR ) |
49 |
48 12 35
|
absdifltd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( abs ` ( 0 - ( ( sqrt ` D ) x. b ) ) ) < a <-> ( ( ( ( sqrt ` D ) x. b ) - a ) < 0 /\ 0 < ( ( ( sqrt ` D ) x. b ) + a ) ) ) ) |
50 |
47 49
|
mpbid |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( ( ( sqrt ` D ) x. b ) - a ) < 0 /\ 0 < ( ( ( sqrt ` D ) x. b ) + a ) ) ) |
51 |
50
|
simprd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < ( ( ( sqrt ` D ) x. b ) + a ) ) |
52 |
|
nn0cn |
|- ( a e. NN0 -> a e. CC ) |
53 |
52
|
adantr |
|- ( ( a e. NN0 /\ b e. ZZ ) -> a e. CC ) |
54 |
53
|
ad2antlr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a e. CC ) |
55 |
54 13
|
addcomd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a + ( ( sqrt ` D ) x. b ) ) = ( ( ( sqrt ` D ) x. b ) + a ) ) |
56 |
51 55
|
breqtrrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < ( a + ( ( sqrt ` D ) x. b ) ) ) |
57 |
56
|
adantrl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 0 < ( a + ( ( sqrt ` D ) x. b ) ) ) |
58 |
|
simprl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
59 |
57 58
|
breqtrrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 0 < A ) |
60 |
59
|
ex |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. ZZ ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < A ) ) |
61 |
60
|
rexlimdvva |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR ) -> ( E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 < A ) ) |
62 |
61
|
expimpd |
|- ( D e. ( NN \ []NN ) -> ( ( A e. RR /\ E. a e. NN0 E. b e. ZZ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 0 < A ) ) |
63 |
1 62
|
sylbid |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) -> 0 < A ) ) |
64 |
63
|
imp |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> 0 < A ) |