| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> D e. ( NN \ []NN ) ) | 
						
							| 2 |  | simprll |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> A e. ( Pell1234QR ` D ) ) | 
						
							| 3 |  | simprrl |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> B e. ( Pell1234QR ` D ) ) | 
						
							| 4 |  | pell1234qrmulcl |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) /\ B e. ( Pell1234QR ` D ) ) -> ( A x. B ) e. ( Pell1234QR ` D ) ) | 
						
							| 5 | 1 2 3 4 | syl3anc |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> ( A x. B ) e. ( Pell1234QR ` D ) ) | 
						
							| 6 |  | pell1234qrre |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR ) | 
						
							| 7 | 2 6 | syldan |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> A e. RR ) | 
						
							| 8 |  | pell1234qrre |  |-  ( ( D e. ( NN \ []NN ) /\ B e. ( Pell1234QR ` D ) ) -> B e. RR ) | 
						
							| 9 | 3 8 | syldan |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> B e. RR ) | 
						
							| 10 |  | simprlr |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> 0 < A ) | 
						
							| 11 |  | simprrr |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> 0 < B ) | 
						
							| 12 | 7 9 10 11 | mulgt0d |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> 0 < ( A x. B ) ) | 
						
							| 13 | 5 12 | jca |  |-  ( ( D e. ( NN \ []NN ) /\ ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) -> ( ( A x. B ) e. ( Pell1234QR ` D ) /\ 0 < ( A x. B ) ) ) | 
						
							| 14 | 13 | ex |  |-  ( D e. ( NN \ []NN ) -> ( ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) -> ( ( A x. B ) e. ( Pell1234QR ` D ) /\ 0 < ( A x. B ) ) ) ) | 
						
							| 15 |  | elpell14qr2 |  |-  ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) ) | 
						
							| 16 |  | elpell14qr2 |  |-  ( D e. ( NN \ []NN ) -> ( B e. ( Pell14QR ` D ) <-> ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) | 
						
							| 17 | 15 16 | anbi12d |  |-  ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) <-> ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) /\ ( B e. ( Pell1234QR ` D ) /\ 0 < B ) ) ) ) | 
						
							| 18 |  | elpell14qr2 |  |-  ( D e. ( NN \ []NN ) -> ( ( A x. B ) e. ( Pell14QR ` D ) <-> ( ( A x. B ) e. ( Pell1234QR ` D ) /\ 0 < ( A x. B ) ) ) ) | 
						
							| 19 | 14 17 18 | 3imtr4d |  |-  ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A x. B ) e. ( Pell14QR ` D ) ) ) | 
						
							| 20 | 19 | 3impib |  |-  ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) /\ B e. ( Pell14QR ` D ) ) -> ( A x. B ) e. ( Pell14QR ` D ) ) |