Step |
Hyp |
Ref |
Expression |
1 |
|
pell1234qrreccl |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> ( 1 / A ) e. ( Pell1234QR ` D ) ) |
2 |
1
|
adantrr |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> ( 1 / A ) e. ( Pell1234QR ` D ) ) |
3 |
|
pell1234qrre |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1234QR ` D ) ) -> A e. RR ) |
4 |
3
|
adantrr |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> A e. RR ) |
5 |
|
simprr |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> 0 < A ) |
6 |
4 5
|
recgt0d |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> 0 < ( 1 / A ) ) |
7 |
2 6
|
jca |
|- ( ( D e. ( NN \ []NN ) /\ ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) -> ( ( 1 / A ) e. ( Pell1234QR ` D ) /\ 0 < ( 1 / A ) ) ) |
8 |
7
|
ex |
|- ( D e. ( NN \ []NN ) -> ( ( A e. ( Pell1234QR ` D ) /\ 0 < A ) -> ( ( 1 / A ) e. ( Pell1234QR ` D ) /\ 0 < ( 1 / A ) ) ) ) |
9 |
|
elpell14qr2 |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> ( A e. ( Pell1234QR ` D ) /\ 0 < A ) ) ) |
10 |
|
elpell14qr2 |
|- ( D e. ( NN \ []NN ) -> ( ( 1 / A ) e. ( Pell14QR ` D ) <-> ( ( 1 / A ) e. ( Pell1234QR ` D ) /\ 0 < ( 1 / A ) ) ) ) |
11 |
8 9 10
|
3imtr4d |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) -> ( 1 / A ) e. ( Pell14QR ` D ) ) ) |
12 |
11
|
imp |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> ( 1 / A ) e. ( Pell14QR ` D ) ) |